1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
use crate::path::Path;
use core::{
cmp::Ordering::{self, Equal},
fmt,
hash::{BuildHasher, Hash},
};
use hashbrown::HashMap;
use std::collections::BinaryHeap;
#[derive(Copy, Clone, Debug)]
pub struct PathEntry<S> {
// cost so far + heursitic
cost_estimate: f32,
node: S,
}
impl<S: Eq> PartialEq for PathEntry<S> {
#[allow(clippy::unconditional_recursion)] // false positive as we use .node
fn eq(&self, other: &PathEntry<S>) -> bool { self.node.eq(&other.node) }
}
impl<S: Eq> Eq for PathEntry<S> {}
impl<S: Eq> Ord for PathEntry<S> {
// This method implements reverse ordering, so that the lowest cost
// will be ordered first
fn cmp(&self, other: &PathEntry<S>) -> Ordering {
other
.cost_estimate
.partial_cmp(&self.cost_estimate)
.unwrap_or(Equal)
}
}
impl<S: Eq> PartialOrd for PathEntry<S> {
fn partial_cmp(&self, other: &PathEntry<S>) -> Option<Ordering> { Some(self.cmp(other)) }
// This is particularily hot in `BinaryHeap::pop`, so we provide this
// implementation.
//
// NOTE: This probably doesn't handle edge cases like `NaNs` in a consistent
// manner with `Ord`, but I don't think we need to care about that here(?)
//
// See note about reverse ordering above.
fn le(&self, other: &PathEntry<S>) -> bool { other.cost_estimate <= self.cost_estimate }
}
pub enum PathResult<T> {
/// No reachable nodes were satisfactory.
///
/// Contains path to node with the lowest heuristic value (out of the
/// explored nodes).
None(Path<T>),
/// Either max_iters or max_cost was reached.
///
/// Contains path to node with the lowest heuristic value (out of the
/// explored nodes).
Exhausted(Path<T>),
/// Path succefully found.
///
/// Second field is cost.
Path(Path<T>, f32),
Pending,
}
impl<T> PathResult<T> {
/// Returns `Some((path, cost))` if a path reaching the target was
/// successfully found.
pub fn into_path(self) -> Option<(Path<T>, f32)> {
match self {
PathResult::Path(path, cost) => Some((path, cost)),
_ => None,
}
}
pub fn map<U>(self, f: impl FnOnce(Path<T>) -> Path<U>) -> PathResult<U> {
match self {
PathResult::None(p) => PathResult::None(f(p)),
PathResult::Exhausted(p) => PathResult::Exhausted(f(p)),
PathResult::Path(p, cost) => PathResult::Path(f(p), cost),
PathResult::Pending => PathResult::Pending,
}
}
}
// If node entry exists, this was visited!
#[derive(Clone, Debug)]
struct NodeEntry<S> {
/// Previous node in the cheapest path (known so far) that goes from the
/// start to this node.
///
/// If `came_from == self` this is the start node! (to avoid inflating the
/// size with `Option`)
came_from: S,
/// Cost to reach this node from the start by following the cheapest path
/// known so far. This is the sum of the transition costs between all the
/// nodes on this path.
cost: f32,
}
#[derive(Clone)]
pub struct Astar<S, Hasher> {
iter: usize,
max_iters: usize,
max_cost: f32,
potential_nodes: BinaryHeap<PathEntry<S>>, // cost, node pairs
visited_nodes: HashMap<S, NodeEntry<S>, Hasher>,
/// Node with the lowest heuristic value so far.
///
/// (node, heuristic value)
closest_node: Option<(S, f32)>,
}
/// NOTE: Must manually derive since Hasher doesn't implement it.
impl<S: Clone + Eq + Hash + fmt::Debug, H: BuildHasher> fmt::Debug for Astar<S, H> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Astar")
.field("iter", &self.iter)
.field("max_iters", &self.max_iters)
.field("potential_nodes", &self.potential_nodes)
.field("visited_nodes", &self.visited_nodes)
.field("closest_node", &self.closest_node)
.finish()
}
}
impl<S: Clone + Eq + Hash, H: BuildHasher + Clone> Astar<S, H> {
pub fn new(max_iters: usize, start: S, hasher: H) -> Self {
Self {
max_iters,
max_cost: f32::MAX,
iter: 0,
potential_nodes: core::iter::once(PathEntry {
cost_estimate: 0.0,
node: start.clone(),
})
.collect(),
visited_nodes: {
let mut s = HashMap::with_capacity_and_hasher(1, hasher);
s.extend(core::iter::once((start.clone(), NodeEntry {
came_from: start,
cost: 0.0,
})));
s
},
closest_node: None,
}
}
pub fn with_max_cost(mut self, max_cost: f32) -> Self {
self.max_cost = max_cost;
self
}
/// To guarantee an optimal path the heuristic function needs to be
/// [admissible](https://en.wikipedia.org/wiki/A*_search_algorithm#Admissibility).
pub fn poll<I>(
&mut self,
iters: usize,
// Estimate how far we are from the target.
mut heuristic: impl FnMut(&S) -> f32,
// get neighboring nodes
mut neighbors: impl FnMut(&S) -> I,
// have we reached target?
mut satisfied: impl FnMut(&S) -> bool,
) -> PathResult<S>
where
I: Iterator<Item = (S, f32)>, // (node, transition cost)
{
let iter_limit = self.max_iters.min(self.iter + iters);
while self.iter < iter_limit {
if let Some(PathEntry {
node,
cost_estimate,
}) = self.potential_nodes.pop()
{
let (node_cost, came_from) = self
.visited_nodes
.get(&node)
.map(|n| (n.cost, n.came_from.clone()))
.expect("All nodes in the queue should be included in visisted_nodes");
if satisfied(&node) {
return PathResult::Path(self.reconstruct_path_to(node), node_cost);
// Note, we assume that cost_estimate isn't an overestimation
// (i.e. that `heuristic` doesn't overestimate).
} else if cost_estimate > self.max_cost {
return PathResult::Exhausted(
self.closest_node
.clone()
.map(|(lc, _)| self.reconstruct_path_to(lc))
.unwrap_or_default(),
);
} else {
for (neighbor, transition_cost) in neighbors(&node) {
if neighbor == came_from {
continue;
}
let neighbor_cost = self
.visited_nodes
.get(&neighbor)
.map_or(f32::MAX, |n| n.cost);
// compute cost to traverse to each neighbor
let cost = node_cost + transition_cost;
if cost < neighbor_cost {
let previously_visited = self
.visited_nodes
.insert(neighbor.clone(), NodeEntry {
came_from: node.clone(),
cost,
})
.is_some();
let h = heuristic(&neighbor);
// note that `cost` field does not include the heuristic
// priority queue does include heuristic
let cost_estimate = cost + h;
if self
.closest_node
.as_ref()
.map(|&(_, ch)| h < ch)
.unwrap_or(true)
{
self.closest_node = Some((node.clone(), h));
};
// We don't need to reconsider already visited nodes as astar finds the
// shortest path to a node the first time it's visited, assuming the
// heuristic function is admissible.
if !previously_visited {
self.potential_nodes.push(PathEntry {
cost_estimate,
node: neighbor,
});
}
}
}
}
} else {
return PathResult::None(
self.closest_node
.clone()
.map(|(lc, _)| self.reconstruct_path_to(lc))
.unwrap_or_default(),
);
}
self.iter += 1
}
if self.iter >= self.max_iters {
PathResult::Exhausted(
self.closest_node
.clone()
.map(|(lc, _)| self.reconstruct_path_to(lc))
.unwrap_or_default(),
)
} else {
PathResult::Pending
}
}
fn reconstruct_path_to(&mut self, end: S) -> Path<S> {
let mut path = vec![end.clone()];
let mut cnode = &end;
while let Some(node) = self
.visited_nodes
.get(cnode)
.map(|n| &n.came_from)
.filter(|n| *n != cnode)
{
path.push(node.clone());
cnode = node;
}
path.into_iter().rev().collect()
}
}