1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
use crate::path::Path;
use core::{
    cmp::Ordering::{self, Equal},
    fmt,
    hash::{BuildHasher, Hash},
};
use hashbrown::HashMap;
use std::collections::BinaryHeap;

#[derive(Copy, Clone, Debug)]
pub struct PathEntry<S> {
    // cost so far + heursitic
    cost_estimate: f32,
    node: S,
}

impl<S: Eq> PartialEq for PathEntry<S> {
    #[allow(clippy::unconditional_recursion)] // false positive as we use .node
    fn eq(&self, other: &PathEntry<S>) -> bool { self.node.eq(&other.node) }
}

impl<S: Eq> Eq for PathEntry<S> {}

impl<S: Eq> Ord for PathEntry<S> {
    // This method implements reverse ordering, so that the lowest cost
    // will be ordered first
    fn cmp(&self, other: &PathEntry<S>) -> Ordering {
        other
            .cost_estimate
            .partial_cmp(&self.cost_estimate)
            .unwrap_or(Equal)
    }
}

impl<S: Eq> PartialOrd for PathEntry<S> {
    fn partial_cmp(&self, other: &PathEntry<S>) -> Option<Ordering> { Some(self.cmp(other)) }

    // This is particularily hot in `BinaryHeap::pop`, so we provide this
    // implementation.
    //
    // NOTE: This probably doesn't handle edge cases like `NaNs` in a consistent
    // manner with `Ord`, but I don't think we need to care about that here(?)
    //
    // See note about reverse ordering above.
    fn le(&self, other: &PathEntry<S>) -> bool { other.cost_estimate <= self.cost_estimate }
}

pub enum PathResult<T> {
    /// No reachable nodes were satisfactory.
    ///
    /// Contains path to node with the lowest heuristic value (out of the
    /// explored nodes).
    None(Path<T>),
    /// Either max_iters or max_cost was reached.
    ///
    /// Contains path to node with the lowest heuristic value (out of the
    /// explored nodes).
    Exhausted(Path<T>),
    /// Path succefully found.
    ///
    /// Second field is cost.
    Path(Path<T>, f32),
    Pending,
}

impl<T> PathResult<T> {
    /// Returns `Some((path, cost))` if a path reaching the target was
    /// successfully found.
    pub fn into_path(self) -> Option<(Path<T>, f32)> {
        match self {
            PathResult::Path(path, cost) => Some((path, cost)),
            _ => None,
        }
    }

    pub fn map<U>(self, f: impl FnOnce(Path<T>) -> Path<U>) -> PathResult<U> {
        match self {
            PathResult::None(p) => PathResult::None(f(p)),
            PathResult::Exhausted(p) => PathResult::Exhausted(f(p)),
            PathResult::Path(p, cost) => PathResult::Path(f(p), cost),
            PathResult::Pending => PathResult::Pending,
        }
    }
}

// If node entry exists, this was visited!
#[derive(Clone, Debug)]
struct NodeEntry<S> {
    /// Previous node in the cheapest path (known so far) that goes from the
    /// start to this node.
    ///
    /// If `came_from == self` this is the start node! (to avoid inflating the
    /// size with `Option`)
    came_from: S,
    /// Cost to reach this node from the start by following the cheapest path
    /// known so far. This is the sum of the transition costs between all the
    /// nodes on this path.
    cost: f32,
}

#[derive(Clone)]
pub struct Astar<S, Hasher> {
    iter: usize,
    max_iters: usize,
    max_cost: f32,
    potential_nodes: BinaryHeap<PathEntry<S>>, // cost, node pairs
    visited_nodes: HashMap<S, NodeEntry<S>, Hasher>,
    /// Node with the lowest heuristic value so far.
    ///
    /// (node, heuristic value)
    closest_node: Option<(S, f32)>,
}

/// NOTE: Must manually derive since Hasher doesn't implement it.
impl<S: Clone + Eq + Hash + fmt::Debug, H: BuildHasher> fmt::Debug for Astar<S, H> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Astar")
            .field("iter", &self.iter)
            .field("max_iters", &self.max_iters)
            .field("potential_nodes", &self.potential_nodes)
            .field("visited_nodes", &self.visited_nodes)
            .field("closest_node", &self.closest_node)
            .finish()
    }
}

impl<S: Clone + Eq + Hash, H: BuildHasher + Clone> Astar<S, H> {
    pub fn new(max_iters: usize, start: S, hasher: H) -> Self {
        Self {
            max_iters,
            max_cost: f32::MAX,
            iter: 0,
            potential_nodes: core::iter::once(PathEntry {
                cost_estimate: 0.0,
                node: start.clone(),
            })
            .collect(),
            visited_nodes: {
                let mut s = HashMap::with_capacity_and_hasher(1, hasher);
                s.extend(core::iter::once((start.clone(), NodeEntry {
                    came_from: start,
                    cost: 0.0,
                })));
                s
            },
            closest_node: None,
        }
    }

    pub fn with_max_cost(mut self, max_cost: f32) -> Self {
        self.max_cost = max_cost;
        self
    }

    /// To guarantee an optimal path the heuristic function needs to be
    /// [admissible](https://en.wikipedia.org/wiki/A*_search_algorithm#Admissibility).
    pub fn poll<I>(
        &mut self,
        iters: usize,
        // Estimate how far we are from the target.
        mut heuristic: impl FnMut(&S) -> f32,
        // get neighboring nodes
        mut neighbors: impl FnMut(&S) -> I,
        // have we reached target?
        mut satisfied: impl FnMut(&S) -> bool,
    ) -> PathResult<S>
    where
        I: Iterator<Item = (S, f32)>, // (node, transition cost)
    {
        let iter_limit = self.max_iters.min(self.iter + iters);
        while self.iter < iter_limit {
            if let Some(PathEntry {
                node,
                cost_estimate,
            }) = self.potential_nodes.pop()
            {
                let (node_cost, came_from) = self
                    .visited_nodes
                    .get(&node)
                    .map(|n| (n.cost, n.came_from.clone()))
                    .expect("All nodes in the queue should be included in visisted_nodes");

                if satisfied(&node) {
                    return PathResult::Path(self.reconstruct_path_to(node), node_cost);
                // Note, we assume that cost_estimate isn't an overestimation
                // (i.e. that `heuristic` doesn't overestimate).
                } else if cost_estimate > self.max_cost {
                    return PathResult::Exhausted(
                        self.closest_node
                            .clone()
                            .map(|(lc, _)| self.reconstruct_path_to(lc))
                            .unwrap_or_default(),
                    );
                } else {
                    for (neighbor, transition_cost) in neighbors(&node) {
                        if neighbor == came_from {
                            continue;
                        }
                        let neighbor_cost = self
                            .visited_nodes
                            .get(&neighbor)
                            .map_or(f32::MAX, |n| n.cost);

                        // compute cost to traverse to each neighbor
                        let cost = node_cost + transition_cost;

                        if cost < neighbor_cost {
                            let previously_visited = self
                                .visited_nodes
                                .insert(neighbor.clone(), NodeEntry {
                                    came_from: node.clone(),
                                    cost,
                                })
                                .is_some();
                            let h = heuristic(&neighbor);
                            // note that `cost` field does not include the heuristic
                            // priority queue does include heuristic
                            let cost_estimate = cost + h;

                            if self
                                .closest_node
                                .as_ref()
                                .map(|&(_, ch)| h < ch)
                                .unwrap_or(true)
                            {
                                self.closest_node = Some((node.clone(), h));
                            };

                            // We don't need to reconsider already visited nodes as astar finds the
                            // shortest path to a node the first time it's visited, assuming the
                            // heuristic function is admissible.
                            if !previously_visited {
                                self.potential_nodes.push(PathEntry {
                                    cost_estimate,
                                    node: neighbor,
                                });
                            }
                        }
                    }
                }
            } else {
                return PathResult::None(
                    self.closest_node
                        .clone()
                        .map(|(lc, _)| self.reconstruct_path_to(lc))
                        .unwrap_or_default(),
                );
            }

            self.iter += 1
        }

        if self.iter >= self.max_iters {
            PathResult::Exhausted(
                self.closest_node
                    .clone()
                    .map(|(lc, _)| self.reconstruct_path_to(lc))
                    .unwrap_or_default(),
            )
        } else {
            PathResult::Pending
        }
    }

    fn reconstruct_path_to(&mut self, end: S) -> Path<S> {
        let mut path = vec![end.clone()];
        let mut cnode = &end;
        while let Some(node) = self
            .visited_nodes
            .get(cnode)
            .map(|n| &n.came_from)
            .filter(|n| *n != cnode)
        {
            path.push(node.clone());
            cnode = node;
        }
        path.into_iter().rev().collect()
    }
}