veloren_common/comp/
agent.rs

1use crate::{
2    comp::{
3        Body, UtteranceKind, biped_large, biped_small, bird_medium, humanoid, object,
4        quadruped_low, quadruped_medium, quadruped_small, ship,
5    },
6    path::Chaser,
7    rtsim::{self, NpcInput, RtSimController},
8    trade::{PendingTrade, ReducedInventory, SiteId, SitePrices, TradeId, TradeResult},
9    uid::Uid,
10};
11use enum_map::EnumMap;
12use serde::{Deserialize, Serialize};
13use specs::{Component, DerefFlaggedStorage, Entity as EcsEntity};
14use std::{collections::VecDeque, fmt};
15use vek::*;
16
17use super::{Group, Pos};
18
19pub const DEFAULT_INTERACTION_TIME: f32 = 3.0;
20pub const TRADE_INTERACTION_TIME: f32 = 300.0;
21const SECONDS_BEFORE_FORGET_SOUNDS: f64 = 180.0;
22
23//intentionally very few concurrent action state variables are allowed. This is
24// to keep the complexity of our AI from getting too large, too quickly.
25// Originally I was going to provide 30 of these, but if we decide later that
26// this is too many and somebody is already using 30 in one of their AI, it will
27// be difficult to go back.
28
29/// The number of timers that a single Action node can track concurrently
30/// Define constants within a given action node to index between them.
31const ACTIONSTATE_NUMBER_OF_CONCURRENT_TIMERS: usize = 5;
32/// The number of float counters that a single Action node can track
33/// concurrently Define constants within a given action node to index between
34/// them.
35const ACTIONSTATE_NUMBER_OF_CONCURRENT_COUNTERS: usize = 5;
36/// The number of integer counters that a single Action node can track
37/// concurrently Define constants within a given action node to index between
38/// them.
39const ACTIONSTATE_NUMBER_OF_CONCURRENT_INT_COUNTERS: usize = 5;
40/// The number of booleans that a single Action node can track concurrently
41/// Define constants within a given action node to index between them.
42const ACTIONSTATE_NUMBER_OF_CONCURRENT_CONDITIONS: usize = 5;
43/// The number of positions that can be remembered by an agent
44const ACTIONSTATE_NUMBER_OF_CONCURRENT_POSITIONS: usize = 5;
45
46#[derive(Copy, Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
47pub enum Alignment {
48    /// Wild animals and gentle giants
49    Wild,
50    /// Dungeon cultists and bandits
51    Enemy,
52    /// Friendly folk in villages
53    Npc,
54    /// Farm animals and pets of villagers
55    Tame,
56    /// Pets you've tamed with a collar
57    Owned(Uid),
58    /// Passive objects like training dummies
59    Passive,
60}
61
62#[derive(Copy, Clone, Debug, PartialEq, Eq)]
63pub enum Mark {
64    Merchant,
65    Guard,
66}
67
68impl Alignment {
69    // Always attacks
70    pub fn hostile_towards(self, other: Alignment) -> bool {
71        match (self, other) {
72            (Alignment::Passive, _) => false,
73            (_, Alignment::Passive) => false,
74            (Alignment::Enemy, Alignment::Enemy) => false,
75            (Alignment::Enemy, Alignment::Wild) => false,
76            (Alignment::Wild, Alignment::Enemy) => false,
77            (Alignment::Wild, Alignment::Wild) => false,
78            (Alignment::Npc, Alignment::Wild) => false,
79            (Alignment::Npc, Alignment::Enemy) => true,
80            (_, Alignment::Enemy) => true,
81            (Alignment::Enemy, _) => true,
82            _ => false,
83        }
84    }
85
86    // Usually never attacks
87    pub fn passive_towards(self, other: Alignment) -> bool {
88        match (self, other) {
89            (Alignment::Enemy, Alignment::Enemy) => true,
90            (Alignment::Owned(a), Alignment::Owned(b)) if a == b => true,
91            (Alignment::Npc, Alignment::Npc) => true,
92            (Alignment::Npc, Alignment::Tame) => true,
93            (Alignment::Enemy, Alignment::Wild) => true,
94            (Alignment::Wild, Alignment::Enemy) => true,
95            (Alignment::Tame, Alignment::Npc) => true,
96            (Alignment::Tame, Alignment::Tame) => true,
97            (_, Alignment::Passive) => true,
98            _ => false,
99        }
100    }
101
102    // Never attacks
103    pub fn friendly_towards(self, other: Alignment) -> bool {
104        match (self, other) {
105            (Alignment::Enemy, Alignment::Enemy) => true,
106            (Alignment::Owned(a), Alignment::Owned(b)) if a == b => true,
107            (Alignment::Npc, Alignment::Npc) => true,
108            (Alignment::Npc, Alignment::Tame) => true,
109            (Alignment::Tame, Alignment::Npc) => true,
110            (Alignment::Tame, Alignment::Tame) => true,
111            (_, Alignment::Passive) => true,
112            _ => false,
113        }
114    }
115
116    /// Default group for this alignment
117    // NOTE: This is a HACK
118    pub fn group(&self) -> Option<Group> {
119        match self {
120            Alignment::Wild => None,
121            Alignment::Passive => None,
122            Alignment::Enemy => Some(super::group::ENEMY),
123            Alignment::Npc | Alignment::Tame => Some(super::group::NPC),
124            Alignment::Owned(_) => None,
125        }
126    }
127}
128
129impl Component for Alignment {
130    type Storage = DerefFlaggedStorage<Self, specs::VecStorage<Self>>;
131}
132
133bitflags::bitflags! {
134    #[derive(Clone, Copy, Debug, Default)]
135    pub struct BehaviorCapability: u8 {
136        const SPEAK = 0b00000001;
137        const TRADE = 0b00000010;
138    }
139}
140bitflags::bitflags! {
141    #[derive(Clone, Copy, Debug, Default)]
142    pub struct BehaviorState: u8 {
143        const TRADING        = 0b00000001;
144        const TRADING_ISSUER = 0b00000010;
145    }
146}
147
148#[derive(Default, Copy, Clone, Debug)]
149pub enum TradingBehavior {
150    #[default]
151    None,
152    RequireBalanced {
153        trade_site: SiteId,
154    },
155    AcceptFood,
156}
157
158impl TradingBehavior {
159    fn can_trade(&self, alignment: Option<Alignment>, counterparty: Uid) -> bool {
160        match self {
161            TradingBehavior::RequireBalanced { .. } => true,
162            TradingBehavior::AcceptFood => alignment == Some(Alignment::Owned(counterparty)),
163            TradingBehavior::None => false,
164        }
165    }
166}
167
168/// # Behavior Component
169/// This component allow an Entity to register one or more behavior tags.
170/// These tags act as flags of what an Entity can do, or what it is doing.
171/// Behaviors Tags can be added and removed as the Entity lives, to update its
172/// state when needed
173#[derive(Default, Copy, Clone, Debug)]
174pub struct Behavior {
175    capabilities: BehaviorCapability,
176    state: BehaviorState,
177    pub trading_behavior: TradingBehavior,
178}
179
180impl From<BehaviorCapability> for Behavior {
181    fn from(capabilities: BehaviorCapability) -> Self {
182        Behavior {
183            capabilities,
184            state: BehaviorState::default(),
185            trading_behavior: TradingBehavior::None,
186        }
187    }
188}
189
190impl Behavior {
191    /// Builder function
192    /// Set capabilities if Option is Some
193    #[must_use]
194    pub fn maybe_with_capabilities(
195        mut self,
196        maybe_capabilities: Option<BehaviorCapability>,
197    ) -> Self {
198        if let Some(capabilities) = maybe_capabilities {
199            self.allow(capabilities)
200        }
201        self
202    }
203
204    /// Builder function
205    /// Set trade_site if Option is Some
206    #[must_use]
207    pub fn with_trade_site(mut self, trade_site: Option<SiteId>) -> Self {
208        if let Some(trade_site) = trade_site {
209            self.trading_behavior = TradingBehavior::RequireBalanced { trade_site };
210        }
211        self
212    }
213
214    /// Set capabilities to the Behavior
215    pub fn allow(&mut self, capabilities: BehaviorCapability) {
216        self.capabilities.set(capabilities, true)
217    }
218
219    /// Unset capabilities to the Behavior
220    pub fn deny(&mut self, capabilities: BehaviorCapability) {
221        self.capabilities.set(capabilities, false)
222    }
223
224    /// Check if the Behavior is able to do something
225    pub fn can(&self, capabilities: BehaviorCapability) -> bool {
226        self.capabilities.contains(capabilities)
227    }
228
229    /// Check if the Behavior is able to trade
230    pub fn can_trade(&self, alignment: Option<Alignment>, counterparty: Uid) -> bool {
231        self.trading_behavior.can_trade(alignment, counterparty)
232    }
233
234    /// Set a state to the Behavior
235    pub fn set(&mut self, state: BehaviorState) { self.state.set(state, true) }
236
237    /// Unset a state to the Behavior
238    pub fn unset(&mut self, state: BehaviorState) { self.state.set(state, false) }
239
240    /// Check if the Behavior has a specific state
241    pub fn is(&self, state: BehaviorState) -> bool { self.state.contains(state) }
242
243    /// Get the trade site at which this behavior evaluates prices, if it does
244    pub fn trade_site(&self) -> Option<SiteId> {
245        if let TradingBehavior::RequireBalanced { trade_site } = self.trading_behavior {
246            Some(trade_site)
247        } else {
248            None
249        }
250    }
251}
252
253#[derive(Clone, Debug, Default)]
254pub struct Psyche {
255    /// The proportion of health below which entities will start fleeing.
256    /// 0.0 = never flees, 1.0 = always flees, 0.5 = flee at 50% health.
257    pub flee_health: f32,
258    /// The distance below which the agent will see enemies if it has line of
259    /// sight.
260    pub sight_dist: f32,
261    /// The distance below which the agent can hear enemies without seeing them.
262    pub listen_dist: f32,
263    /// The distance below which the agent will attack enemies. Should be lower
264    /// than `sight_dist`. `None` implied that the agent is always aggro
265    /// towards enemies that it is aware of.
266    pub aggro_dist: Option<f32>,
267    /// A factor that controls how much further an agent will wander when in the
268    /// idle state. `1.0` is normal.
269    pub idle_wander_factor: f32,
270    /// Aggro range is multiplied by this factor. `1.0` is normal.
271    ///
272    /// This includes scaling the effective `sight_dist` and `listen_dist`
273    /// when finding new targets to attack, adjusting the strength of
274    /// wandering behavior in the idle state, and scaling `aggro_dist` in
275    /// certain situations.
276    pub aggro_range_multiplier: f32,
277    /// Whether this entity should *intelligently* decide to loose aggro based
278    /// on distance from agent home and health, this is not suitable for world
279    /// bosses and roaming entities
280    pub should_stop_pursuing: bool,
281}
282
283impl<'a> From<&'a Body> for Psyche {
284    fn from(body: &'a Body) -> Self {
285        Self {
286            flee_health: match body {
287                Body::Humanoid(humanoid) => match humanoid.species {
288                    humanoid::Species::Danari => 0.4,
289                    humanoid::Species::Dwarf => 0.3,
290                    humanoid::Species::Elf => 0.4,
291                    humanoid::Species::Human => 0.4,
292                    humanoid::Species::Orc => 0.3,
293                    humanoid::Species::Draugr => 0.3,
294                },
295                Body::QuadrupedSmall(quadruped_small) => match quadruped_small.species {
296                    quadruped_small::Species::Pig => 0.5,
297                    quadruped_small::Species::Fox => 0.3,
298                    quadruped_small::Species::Sheep => 0.25,
299                    quadruped_small::Species::Boar => 0.1,
300                    quadruped_small::Species::Skunk => 0.4,
301                    quadruped_small::Species::Cat => 0.99,
302                    quadruped_small::Species::Batfox => 0.1,
303                    quadruped_small::Species::Raccoon => 0.4,
304                    quadruped_small::Species::Hyena => 0.1,
305                    quadruped_small::Species::Dog => 0.8,
306                    quadruped_small::Species::Rabbit | quadruped_small::Species::Jackalope => 0.25,
307                    quadruped_small::Species::Truffler => 0.08,
308                    quadruped_small::Species::Hare => 0.3,
309                    quadruped_small::Species::Goat => 0.3,
310                    quadruped_small::Species::Porcupine => 0.2,
311                    quadruped_small::Species::Turtle => 0.4,
312                    quadruped_small::Species::Beaver => 0.2,
313                    // FIXME: This is to balance for enemy rats in dungeons
314                    // Normal rats should probably always flee.
315                    quadruped_small::Species::Rat
316                    | quadruped_small::Species::TreantSapling
317                    | quadruped_small::Species::Holladon
318                    | quadruped_small::Species::MossySnail => 0.0,
319                    _ => 1.0,
320                },
321                Body::QuadrupedMedium(quadruped_medium) => match quadruped_medium.species {
322                    // T1
323                    quadruped_medium::Species::Antelope => 0.15,
324                    quadruped_medium::Species::Donkey => 0.05,
325                    quadruped_medium::Species::Horse => 0.15,
326                    quadruped_medium::Species::Mouflon => 0.1,
327                    quadruped_medium::Species::Zebra => 0.1,
328                    // T2
329                    // Should probably not have non-grouped, hostile animals flee until fleeing is
330                    // improved.
331                    quadruped_medium::Species::Barghest
332                    | quadruped_medium::Species::Bear
333                    | quadruped_medium::Species::Bristleback
334                    | quadruped_medium::Species::Bonerattler => 0.0,
335                    quadruped_medium::Species::Cattle => 0.1,
336                    quadruped_medium::Species::Frostfang => 0.07,
337                    quadruped_medium::Species::Grolgar => 0.0,
338                    quadruped_medium::Species::Highland => 0.05,
339                    quadruped_medium::Species::Kelpie => 0.35,
340                    quadruped_medium::Species::Lion => 0.0,
341                    quadruped_medium::Species::Moose => 0.15,
342                    quadruped_medium::Species::Panda => 0.35,
343                    quadruped_medium::Species::Saber
344                    | quadruped_medium::Species::Tarasque
345                    | quadruped_medium::Species::Tiger => 0.0,
346                    quadruped_medium::Species::Tuskram => 0.1,
347                    quadruped_medium::Species::Wolf => 0.2,
348                    quadruped_medium::Species::Yak => 0.09,
349                    // T3A
350                    quadruped_medium::Species::Akhlut
351                    | quadruped_medium::Species::Catoblepas
352                    | quadruped_medium::Species::ClaySteed
353                    | quadruped_medium::Species::Dreadhorn
354                    | quadruped_medium::Species::Hirdrasil
355                    | quadruped_medium::Species::Mammoth
356                    | quadruped_medium::Species::Ngoubou
357                    | quadruped_medium::Species::Roshwalr => 0.0,
358                    _ => 0.15,
359                },
360                Body::QuadrupedLow(quadruped_low) => match quadruped_low.species {
361                    // T1
362                    quadruped_low::Species::Pangolin => 0.3,
363                    // T2,
364                    quadruped_low::Species::Tortoise => 0.1,
365                    // There are a lot of hostile, solo entities.
366                    _ => 0.0,
367                },
368                Body::BipedSmall(biped_small) => match biped_small.species {
369                    biped_small::Species::Gnarling => 0.2,
370                    biped_small::Species::Mandragora => 0.1,
371                    biped_small::Species::Adlet => 0.2,
372                    biped_small::Species::Haniwa => 0.1,
373                    biped_small::Species::Sahagin => 0.1,
374                    biped_small::Species::Myrmidon => 0.0,
375                    biped_small::Species::TreasureEgg => 9.9,
376                    biped_small::Species::Husk
377                    | biped_small::Species::Boreal
378                    | biped_small::Species::IronDwarf
379                    | biped_small::Species::Flamekeeper
380                    | biped_small::Species::Irrwurz
381                    | biped_small::Species::GoblinThug
382                    | biped_small::Species::GoblinChucker
383                    | biped_small::Species::GoblinRuffian
384                    | biped_small::Species::GreenLegoom
385                    | biped_small::Species::OchreLegoom
386                    | biped_small::Species::PurpleLegoom
387                    | biped_small::Species::RedLegoom
388                    | biped_small::Species::ShamanicSpirit
389                    | biped_small::Species::Jiangshi
390                    | biped_small::Species::Bushly
391                    | biped_small::Species::Cactid
392                    | biped_small::Species::BloodmoonHeiress
393                    | biped_small::Species::Bloodservant
394                    | biped_small::Species::Harlequin
395                    | biped_small::Species::GnarlingChieftain => 0.0,
396
397                    _ => 0.5,
398                },
399                Body::BirdMedium(bird_medium) => match bird_medium.species {
400                    bird_medium::Species::SnowyOwl => 0.4,
401                    bird_medium::Species::HornedOwl => 0.4,
402                    bird_medium::Species::Duck => 0.6,
403                    bird_medium::Species::Cockatiel => 0.6,
404                    bird_medium::Species::Chicken => 0.5,
405                    bird_medium::Species::Bat => 0.1,
406                    bird_medium::Species::Penguin => 0.5,
407                    bird_medium::Species::Goose => 0.4,
408                    bird_medium::Species::Peacock => 0.3,
409                    bird_medium::Species::Eagle => 0.2,
410                    bird_medium::Species::Parrot => 0.8,
411                    bird_medium::Species::Crow => 0.4,
412                    bird_medium::Species::Dodo => 0.8,
413                    bird_medium::Species::Parakeet => 0.8,
414                    bird_medium::Species::Puffin => 0.8,
415                    bird_medium::Species::Toucan => 0.4,
416                    bird_medium::Species::BloodmoonBat => 0.0,
417                    bird_medium::Species::VampireBat => 0.0,
418                },
419                Body::BirdLarge(_) => 0.0,
420                Body::FishSmall(_) => 1.0,
421                Body::FishMedium(_) => 0.75,
422                Body::BipedLarge(_) => 0.0,
423                Body::Object(_) => 0.0,
424                Body::Item(_) => 0.0,
425                Body::Golem(_) => 0.0,
426                Body::Theropod(_) => 0.0,
427                Body::Ship(_) => 0.0,
428                Body::Dragon(_) => 0.0,
429                Body::Arthropod(_) => 0.0,
430                Body::Crustacean(_) => 0.0,
431                Body::Plugin(body) => body.flee_health(),
432            },
433            sight_dist: match body {
434                Body::BirdLarge(_) => 250.0,
435                Body::BipedLarge(biped_large) => match biped_large.species {
436                    biped_large::Species::Gigasfrost | biped_large::Species::Gigasfire => 200.0,
437                    _ => 100.0,
438                },
439                _ => 40.0,
440            },
441            listen_dist: 30.0,
442            aggro_dist: match body {
443                Body::Humanoid(_) => Some(20.0),
444                _ => None, // Always aggressive if detected
445            },
446            idle_wander_factor: 1.0,
447            aggro_range_multiplier: 1.0,
448            should_stop_pursuing: match body {
449                Body::BirdLarge(_) => false,
450                Body::BipedLarge(biped_large) => !matches!(
451                    biped_large.species,
452                    biped_large::Species::Gigasfrost | biped_large::Species::Gigasfire
453                ),
454                Body::BirdMedium(bird_medium) => {
455                    // Skip stop_pursuing, as that function breaks when the health fraction is 0.0
456                    // (to keep aggro after death transform)
457                    !matches!(bird_medium.species, bird_medium::Species::BloodmoonBat)
458                },
459                _ => true,
460            },
461        }
462    }
463}
464
465impl Psyche {
466    /// The maximum distance that targets to attack might be detected by this
467    /// agent.
468    pub fn search_dist(&self) -> f32 {
469        self.sight_dist.max(self.listen_dist) * self.aggro_range_multiplier
470    }
471}
472
473#[derive(Clone, Debug)]
474/// Events that affect agent behavior from other entities/players/environment
475pub enum AgentEvent {
476    /// Engage in conversation with entity with Uid
477    Talk(Uid),
478    TradeInvite(Uid),
479    TradeAccepted(Uid),
480    FinishedTrade(TradeResult),
481    UpdatePendingTrade(
482        // This data structure is large so box it to keep AgentEvent small
483        Box<(
484            TradeId,
485            PendingTrade,
486            SitePrices,
487            [Option<ReducedInventory>; 2],
488        )>,
489    ),
490    ServerSound(Sound),
491    Hurt,
492    Dialogue(Uid, rtsim::Dialogue<true>),
493}
494
495#[derive(Copy, Clone, Debug)]
496pub struct Sound {
497    pub kind: SoundKind,
498    pub pos: Vec3<f32>,
499    pub vol: f32,
500    pub time: f64,
501}
502
503impl Sound {
504    pub fn new(kind: SoundKind, pos: Vec3<f32>, vol: f32, time: f64) -> Self {
505        Sound {
506            kind,
507            pos,
508            vol,
509            time,
510        }
511    }
512
513    #[must_use]
514    pub fn with_new_vol(mut self, new_vol: f32) -> Self {
515        self.vol = new_vol;
516
517        self
518    }
519}
520
521#[derive(Copy, Clone, Debug)]
522pub enum SoundKind {
523    Unknown,
524    Utterance(UtteranceKind, Body),
525    Movement,
526    Melee,
527    Projectile,
528    Explosion,
529    Beam,
530    Shockwave,
531    Mine,
532    Trap,
533}
534
535#[derive(Clone, Copy, Debug)]
536pub struct Target {
537    pub target: EcsEntity,
538    /// Whether the target is hostile
539    pub hostile: bool,
540    /// The time at which the target was selected
541    pub selected_at: f64,
542    /// Whether the target has come close enough to trigger aggro.
543    pub aggro_on: bool,
544    pub last_known_pos: Option<Vec3<f32>>,
545}
546
547impl Target {
548    pub fn new(
549        target: EcsEntity,
550        hostile: bool,
551        selected_at: f64,
552        aggro_on: bool,
553        last_known_pos: Option<Vec3<f32>>,
554    ) -> Self {
555        Self {
556            target,
557            hostile,
558            selected_at,
559            aggro_on,
560            last_known_pos,
561        }
562    }
563}
564
565#[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, enum_map::Enum)]
566pub enum TimerAction {
567    Interact,
568    Warn,
569}
570
571/// A time used for managing agent-related timeouts. The timer is designed to
572/// keep track of the start of any number of previous actions. However,
573/// starting/progressing an action will end previous actions. Therefore, the
574/// timer should be used for actions that are mutually-exclusive.
575#[derive(Clone, Debug, Default)]
576pub struct Timer {
577    action_starts: EnumMap<TimerAction, Option<f64>>,
578    last_action: Option<TimerAction>,
579}
580
581impl Timer {
582    /// Reset the timer for the given action, returning true if the timer was
583    /// not already reset.
584    pub fn reset(&mut self, action: TimerAction) -> bool {
585        self.action_starts[action].take().is_some()
586    }
587
588    /// Start the timer for the given action, even if it was already started.
589    pub fn start(&mut self, time: f64, action: TimerAction) {
590        self.action_starts[action] = Some(time);
591        self.last_action = Some(action);
592    }
593
594    /// Continue timing the given action, starting it if it was not already
595    /// started.
596    pub fn progress(&mut self, time: f64, action: TimerAction) {
597        if self.last_action != Some(action) {
598            self.start(time, action);
599        }
600    }
601
602    /// Return the time that the given action was last performed at.
603    pub fn time_of_last(&self, action: TimerAction) -> Option<f64> { self.action_starts[action] }
604
605    /// Return `true` if the time since the action was last started exceeds the
606    /// given timeout.
607    pub fn time_since_exceeds(&self, time: f64, action: TimerAction, timeout: f64) -> bool {
608        self.time_of_last(action)
609            .is_none_or(|last_time| (time - last_time).max(0.0) > timeout)
610    }
611
612    /// Return `true` while the time since the action was last started is less
613    /// than the given period. Once the time has elapsed, reset the timer.
614    pub fn timeout_elapsed(
615        &mut self,
616        time: f64,
617        action: TimerAction,
618        timeout: f64,
619    ) -> Option<bool> {
620        if self.time_since_exceeds(time, action, timeout) {
621            Some(self.reset(action))
622        } else {
623            self.progress(time, action);
624            None
625        }
626    }
627}
628
629/// For use with the builder pattern <https://doc.rust-lang.org/1.0.0/style/ownership/builders.html>
630#[derive(Clone, Debug)]
631pub struct Agent {
632    pub rtsim_controller: RtSimController,
633    pub patrol_origin: Option<Vec3<f32>>,
634    pub target: Option<Target>,
635    pub chaser: Chaser,
636    pub behavior: Behavior,
637    pub psyche: Psyche,
638    pub inbox: VecDeque<AgentEvent>,
639    pub combat_state: ActionState,
640    pub behavior_state: ActionState,
641    pub timer: Timer,
642    pub bearing: Vec2<f32>,
643    pub sounds_heard: Vec<Sound>,
644    pub multi_pid_controllers: Option<PidControllers<16>>,
645    /// Position from which to flee. Intended to be the agent's position plus a
646    /// random position offset, to be used when a random flee direction is
647    /// required and reset each time the flee timer is reset.
648    pub flee_from_pos: Option<Pos>,
649    pub awareness: Awareness,
650    pub stay_pos: Option<Pos>,
651    /// Inputs sent up to rtsim
652    pub rtsim_outbox: Option<VecDeque<NpcInput>>,
653}
654
655#[derive(Serialize, Deserialize)]
656pub struct SharedChaser {
657    pub nodes: Vec<Vec3<f32>>,
658    pub goal: Option<Vec3<f32>>,
659}
660
661#[derive(Clone, Debug)]
662/// Always clamped between `0.0` and `1.0`.
663pub struct Awareness {
664    level: f32,
665    reached: bool,
666}
667impl fmt::Display for Awareness {
668    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:.2}", self.level) }
669}
670impl Awareness {
671    const ALERT: f32 = 1.0;
672    const HIGH: f32 = 0.6;
673    const LOW: f32 = 0.1;
674    const MEDIUM: f32 = 0.3;
675    const UNAWARE: f32 = 0.0;
676
677    pub fn new(level: f32) -> Self {
678        Self {
679            level: level.clamp(Self::UNAWARE, Self::ALERT),
680            reached: false,
681        }
682    }
683
684    /// The level of awareness as a decimal.
685    pub fn level(&self) -> f32 { self.level }
686
687    /// The level of awareness in English. To see if awareness has been fully
688    /// reached, use `self.reached()`.
689    pub fn state(&self) -> AwarenessState {
690        if self.level == Self::ALERT {
691            AwarenessState::Alert
692        } else if self.level.is_between(Self::HIGH, Self::ALERT) {
693            AwarenessState::High
694        } else if self.level.is_between(Self::MEDIUM, Self::HIGH) {
695            AwarenessState::Medium
696        } else if self.level.is_between(Self::LOW, Self::MEDIUM) {
697            AwarenessState::Low
698        } else {
699            AwarenessState::Unaware
700        }
701    }
702
703    /// Awareness was reached at some point and has not been reset.
704    pub fn reached(&self) -> bool { self.reached }
705
706    pub fn change_by(&mut self, amount: f32) {
707        self.level = (self.level + amount).clamp(Self::UNAWARE, Self::ALERT);
708
709        if self.state() == AwarenessState::Alert {
710            self.reached = true;
711        } else if self.state() == AwarenessState::Unaware {
712            self.reached = false;
713        }
714    }
715
716    pub fn set_maximally_aware(&mut self) {
717        self.reached = true;
718        self.level = Self::ALERT;
719    }
720}
721
722#[derive(Clone, Debug, PartialOrd, PartialEq, Eq)]
723pub enum AwarenessState {
724    Unaware = 0,
725    Low = 1,
726    Medium = 2,
727    High = 3,
728    Alert = 4,
729}
730
731/// State persistence object for the behavior tree
732/// Allows for state to be stored between subsequent, sequential calls of a
733/// single action node. If the executed action node changes between ticks, then
734/// the state should be considered lost.
735#[derive(Clone, Debug, Default)]
736pub struct ActionState {
737    pub timers: [f32; ACTIONSTATE_NUMBER_OF_CONCURRENT_TIMERS],
738    pub counters: [f32; ACTIONSTATE_NUMBER_OF_CONCURRENT_COUNTERS],
739    pub conditions: [bool; ACTIONSTATE_NUMBER_OF_CONCURRENT_CONDITIONS],
740    pub int_counters: [u8; ACTIONSTATE_NUMBER_OF_CONCURRENT_INT_COUNTERS],
741    pub positions: [Option<Vec3<f32>>; ACTIONSTATE_NUMBER_OF_CONCURRENT_POSITIONS],
742    pub initialized: bool,
743}
744
745impl Agent {
746    /// Instantiates agent from body using the body's psyche
747    pub fn from_body(body: &Body) -> Self {
748        Agent {
749            rtsim_controller: RtSimController::default(),
750            patrol_origin: None,
751            target: None,
752            chaser: Chaser::default(),
753            behavior: Behavior::default(),
754            psyche: Psyche::from(body),
755            inbox: VecDeque::new(),
756            combat_state: ActionState::default(),
757            behavior_state: ActionState::default(),
758            timer: Timer::default(),
759            bearing: Vec2::zero(),
760            sounds_heard: Vec::new(),
761            multi_pid_controllers: None,
762            flee_from_pos: None,
763            stay_pos: None,
764            awareness: Awareness::new(0.0),
765            rtsim_outbox: None,
766        }
767    }
768
769    #[must_use]
770    pub fn with_patrol_origin(mut self, origin: Vec3<f32>) -> Self {
771        self.patrol_origin = Some(origin);
772        self
773    }
774
775    #[must_use]
776    pub fn with_behavior(mut self, behavior: Behavior) -> Self {
777        self.behavior = behavior;
778        self
779    }
780
781    #[must_use]
782    pub fn with_no_flee_if(mut self, condition: bool) -> Self {
783        if condition {
784            self.psyche.flee_health = 0.0;
785        }
786        self
787    }
788
789    pub fn set_no_flee(&mut self) { self.psyche.flee_health = 0.0; }
790
791    // FIXME: Only one of *three* things in this method sets a location.
792    #[must_use]
793    pub fn with_destination(mut self, pos: Vec3<f32>) -> Self {
794        self.psyche.flee_health = 0.0;
795        self.rtsim_controller = RtSimController::with_destination(pos);
796        self.behavior.allow(BehaviorCapability::SPEAK);
797        self
798    }
799
800    #[must_use]
801    pub fn with_idle_wander_factor(mut self, idle_wander_factor: f32) -> Self {
802        self.psyche.idle_wander_factor = idle_wander_factor;
803        self
804    }
805
806    pub fn with_aggro_range_multiplier(mut self, aggro_range_multiplier: f32) -> Self {
807        self.psyche.aggro_range_multiplier = aggro_range_multiplier;
808        self
809    }
810
811    #[must_use]
812    pub fn with_altitude_pid_controller(mut self, mpid: PidControllers<16>) -> Self {
813        self.multi_pid_controllers = Some(mpid);
814        self
815    }
816
817    /// Makes agent aggressive without warning
818    #[must_use]
819    pub fn with_aggro_no_warn(mut self) -> Self {
820        self.psyche.aggro_dist = None;
821        self
822    }
823
824    pub fn forget_old_sounds(&mut self, time: f64) {
825        if !self.sounds_heard.is_empty() {
826            // Keep (retain) only newer sounds
827            self.sounds_heard
828                .retain(|&sound| time - sound.time <= SECONDS_BEFORE_FORGET_SOUNDS);
829        }
830    }
831
832    pub fn allowed_to_speak(&self) -> bool { self.behavior.can(BehaviorCapability::SPEAK) }
833}
834
835impl Component for Agent {
836    type Storage = specs::DenseVecStorage<Self>;
837}
838
839#[cfg(test)]
840mod tests {
841    use super::{Agent, Behavior, BehaviorCapability, BehaviorState, Body, humanoid};
842
843    /// Test to verify that Behavior is working correctly at its most basic
844    /// usages
845    #[test]
846    pub fn behavior_basic() {
847        let mut b = Behavior::default();
848        // test capabilities
849        assert!(!b.can(BehaviorCapability::SPEAK));
850        b.allow(BehaviorCapability::SPEAK);
851        assert!(b.can(BehaviorCapability::SPEAK));
852        b.deny(BehaviorCapability::SPEAK);
853        assert!(!b.can(BehaviorCapability::SPEAK));
854        // test states
855        assert!(!b.is(BehaviorState::TRADING));
856        b.set(BehaviorState::TRADING);
857        assert!(b.is(BehaviorState::TRADING));
858        b.unset(BehaviorState::TRADING);
859        assert!(!b.is(BehaviorState::TRADING));
860        // test `from`
861        let b = Behavior::from(BehaviorCapability::SPEAK);
862        assert!(b.can(BehaviorCapability::SPEAK));
863    }
864
865    /// Makes agent flee
866    #[test]
867    pub fn enable_flee() {
868        let body = Body::Humanoid(humanoid::Body::random());
869        let mut agent = Agent::from_body(&body);
870
871        agent.psyche.flee_health = 1.0;
872        agent = agent.with_no_flee_if(false);
873        assert_eq!(agent.psyche.flee_health, 1.0);
874    }
875
876    /// Makes agent not flee
877    #[test]
878    pub fn set_no_flee() {
879        let body = Body::Humanoid(humanoid::Body::random());
880        let mut agent = Agent::from_body(&body);
881
882        agent.psyche.flee_health = 1.0;
883        agent.set_no_flee();
884        assert_eq!(agent.psyche.flee_health, 0.0);
885    }
886
887    #[test]
888    pub fn with_aggro_no_warn() {
889        let body = Body::Humanoid(humanoid::Body::random());
890        let mut agent = Agent::from_body(&body);
891
892        agent.psyche.aggro_dist = Some(1.0);
893        agent = agent.with_aggro_no_warn();
894        assert_eq!(agent.psyche.aggro_dist, None);
895    }
896}
897
898/// PID controllers (Proportional–integral–derivative controllers) are used for
899/// automatically adapting nonlinear controls (like buoyancy for balloons)
900/// and for damping out oscillations in control feedback loops (like vehicle
901/// cruise control). PID controllers can monitor an error signal between a
902/// setpoint and a process variable, and use that error to adjust a control
903/// variable. A PID controller can only control one variable at a time.
904#[derive(Clone)]
905pub struct PidController<F: Fn(f32, f32) -> f32, const NUM_SAMPLES: usize> {
906    /// The coefficient of the proportional term
907    pub kp: f32,
908    /// The coefficient of the integral term
909    pub ki: f32,
910    /// The coefficient of the derivative term
911    pub kd: f32,
912    /// The setpoint that the process has as its goal
913    pub sp: f32,
914    /// A ring buffer of the last NUM_SAMPLES measured process variables
915    pv_samples: [(f64, f32); NUM_SAMPLES],
916    /// The index into the ring buffer of process variables
917    pv_idx: usize,
918    /// The total integral error
919    integral_error: f64,
920    /// The error function, to change how the difference between the setpoint
921    /// and process variables are calculated
922    e: F,
923}
924
925impl<F: Fn(f32, f32) -> f32, const NUM_SAMPLES: usize> fmt::Debug
926    for PidController<F, NUM_SAMPLES>
927{
928    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
929        f.debug_struct("PidController")
930            .field("kp", &self.kp)
931            .field("ki", &self.ki)
932            .field("kd", &self.kd)
933            .field("sp", &self.sp)
934            .field("pv_samples", &self.pv_samples)
935            .field("pv_idx", &self.pv_idx)
936            .finish()
937    }
938}
939
940impl<F: Fn(f32, f32) -> f32, const NUM_SAMPLES: usize> PidController<F, NUM_SAMPLES> {
941    /// Constructs a PidController with the specified weights, setpoint,
942    /// starting time, and error function
943    pub fn new(kp: f32, ki: f32, kd: f32, sp: f32, time: f64, e: F) -> Self {
944        Self {
945            kp,
946            ki,
947            kd,
948            sp,
949            pv_samples: [(time, sp); NUM_SAMPLES],
950            pv_idx: 0,
951            integral_error: 0.0,
952            e,
953        }
954    }
955
956    /// Adds a measurement of the process variable to the ringbuffer
957    pub fn add_measurement(&mut self, time: f64, pv: f32) {
958        self.pv_idx += 1;
959        self.pv_idx %= NUM_SAMPLES;
960        self.pv_samples[self.pv_idx] = (time, pv);
961        self.update_integral_err();
962    }
963
964    /// The amount to set the control variable to is a weighed sum of the
965    /// proportional error, the integral error, and the derivative error.
966    /// <https://en.wikipedia.org/wiki/PID_controller#Mathematical_form>
967    pub fn calc_err(&self) -> f32 {
968        self.kp * self.proportional_err()
969            + self.ki * self.integral_err()
970            + self.kd * self.derivative_err()
971    }
972
973    /// The proportional error is the error function applied to the set point
974    /// and the most recent process variable measurement
975    pub fn proportional_err(&self) -> f32 { (self.e)(self.sp, self.pv_samples[self.pv_idx].1) }
976
977    /// The integral error is the error function integrated over all previous
978    /// values, updated per point. The trapezoid rule for numerical integration
979    /// was chosen because it's fairly easy to calculate and sufficiently
980    /// accurate. <https://en.wikipedia.org/wiki/Trapezoidal_rule#Uniform_grid>
981    pub fn integral_err(&self) -> f32 { self.integral_error as f32 }
982
983    fn update_integral_err(&mut self) {
984        let f = |x| (self.e)(self.sp, x) as f64;
985        let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES];
986        let (b, x1) = self.pv_samples[self.pv_idx];
987        let dx = b - a;
988        // Discard updates with too long between them, likely caused by either
989        // initialization or latency, since they're likely to be spurious
990        if dx < 5.0 {
991            self.integral_error += dx * (f(x1) + f(x0)) / 2.0;
992        }
993    }
994
995    /// The integral error accumulates over time, and can get to the point where
996    /// the output of the controller is saturated. This is called integral
997    /// windup, and it commonly occurs when the controller setpoint is
998    /// changed. To limit the integral error signal, this function can be
999    /// called with a fn/closure that can modify the integral_error value.
1000    pub fn limit_integral_windup<W>(&mut self, f: W)
1001    where
1002        W: Fn(&mut f64),
1003    {
1004        f(&mut self.integral_error);
1005    }
1006
1007    /// The derivative error is the numerical derivative of the error function
1008    /// based on the most recent 2 samples. Using more than 2 samples might
1009    /// improve the accuracy of the estimate of the derivative, but it would be
1010    /// an estimate of the derivative error further in the past.
1011    /// <https://en.wikipedia.org/wiki/Numerical_differentiation#Finite_differences>
1012    pub fn derivative_err(&self) -> f32 {
1013        let f = |x| (self.e)(self.sp, x);
1014        let (a, x0) = self.pv_samples[(self.pv_idx + NUM_SAMPLES - 1) % NUM_SAMPLES];
1015        let (b, x1) = self.pv_samples[self.pv_idx];
1016        let h = b - a;
1017        if h == 0.0 {
1018            0.0
1019        } else {
1020            (f(x1) - f(x0)) / h as f32
1021        }
1022    }
1023}
1024
1025/// The desired flight behavior when an entity is approaching a target position.
1026#[derive(Copy, Clone, Debug, PartialEq)]
1027pub enum FlightMode {
1028    /// The agent should cause the entity to decelerate and stop at the target
1029    /// position.
1030    Braking(BrakingMode),
1031    /// The agent should cause the entity to fly to and through the target
1032    /// position without slowing.
1033    FlyThrough,
1034}
1035
1036/// When FlightMode is Braking, the agent can use different braking modes to
1037/// control the amount of overshoot and oscillation.
1038#[derive(Default, Copy, Clone, Debug, PartialEq)]
1039pub enum BrakingMode {
1040    /// Oscillation around the target position is acceptable, with slow damping.
1041    /// This mode is useful for when the entity is not expected to fully stop at
1042    /// the target position, and arrival near the target position is more
1043    /// important than precision.
1044    #[default]
1045    Normal,
1046    /// Prefer faster damping of position error, reducing overshoot and
1047    /// oscillation around the target position. This mode is useful for when
1048    /// the entity is expected to fully stop at the target and precision is
1049    /// most important.
1050    Precise,
1051}
1052
1053/// A Mulit-PID controller that can control the acceleration/velocity in one or
1054/// all three axes.
1055#[derive(Clone)]
1056pub struct PidControllers<const NUM_SAMPLES: usize> {
1057    pub mode: FlightMode,
1058    /// This is ignored unless the mode FixedDirection.
1059    pub x_controller: Option<PidController<fn(f32, f32) -> f32, NUM_SAMPLES>>,
1060    pub y_controller: Option<PidController<fn(f32, f32) -> f32, NUM_SAMPLES>>,
1061    pub z_controller: Option<PidController<fn(f32, f32) -> f32, NUM_SAMPLES>>,
1062}
1063
1064impl<const NUM_SAMPLES: usize> fmt::Debug for PidControllers<NUM_SAMPLES> {
1065    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1066        f.debug_struct("PidControllers")
1067            .field("mode", &self.mode)
1068            .field("x_controller", &self.x_controller)
1069            .field("y_controller", &self.y_controller)
1070            .field("z_controller", &self.z_controller)
1071            .finish()
1072    }
1073}
1074
1075/// A collection of PidControllers, one for each 3D axis.
1076/// Airships use either one or three PidControllers, depending on the mode
1077/// (see action_nodes.rs for details of Airship modes).
1078impl<const NUM_SAMPLES: usize> PidControllers<NUM_SAMPLES> {
1079    pub fn new(mode: FlightMode) -> Self {
1080        Self {
1081            mode,
1082            x_controller: None,
1083            y_controller: None,
1084            z_controller: None,
1085        }
1086    }
1087
1088    pub fn new_multi_pid_controllers(mode: FlightMode, travel_to: Vec3<f32>) -> PidControllers<16> {
1089        let mut mpid = PidControllers::new(mode);
1090        // FixedDirection requires x and y and z controllers
1091        // PureZ requires only z controller
1092        if matches!(mode, FlightMode::Braking(_)) {
1093            // Add x_controller && y_controller
1094            let (kp, ki, kd) = pid_coefficients_for_mode(mode, false);
1095            mpid.x_controller = Some(PidController::new(
1096                kp,
1097                ki,
1098                kd,
1099                travel_to.x,
1100                0.0,
1101                |sp, pv| sp - pv,
1102            ));
1103            mpid.y_controller = Some(PidController::new(
1104                kp,
1105                ki,
1106                kd,
1107                travel_to.y,
1108                0.0,
1109                |sp, pv| sp - pv,
1110            ));
1111        }
1112        // Add z_controller
1113        let (kp, ki, kd) = pid_coefficients_for_mode(mode, true);
1114        mpid.z_controller = Some(PidController::new(
1115            kp,
1116            ki,
1117            kd,
1118            travel_to.z,
1119            0.0,
1120            |sp, pv| sp - pv,
1121        ));
1122        mpid
1123    }
1124
1125    #[inline(always)]
1126    pub fn add_x_measurement(&mut self, time: f64, pv: f32) {
1127        if let Some(controller) = &mut self.x_controller {
1128            controller.add_measurement(time, pv);
1129        }
1130    }
1131
1132    #[inline(always)]
1133    pub fn add_y_measurement(&mut self, time: f64, pv: f32) {
1134        if let Some(controller) = &mut self.y_controller {
1135            controller.add_measurement(time, pv);
1136        }
1137    }
1138
1139    #[inline(always)]
1140    pub fn add_z_measurement(&mut self, time: f64, pv: f32) {
1141        if let Some(controller) = &mut self.z_controller {
1142            controller.add_measurement(time, pv);
1143        }
1144    }
1145
1146    #[inline(always)]
1147    pub fn add_measurement(&mut self, time: f64, pos: Vec3<f32>) {
1148        if let Some(controller) = &mut self.x_controller {
1149            controller.add_measurement(time, pos.x);
1150        }
1151        if let Some(controller) = &mut self.y_controller {
1152            controller.add_measurement(time, pos.y);
1153        }
1154        if let Some(controller) = &mut self.z_controller {
1155            controller.add_measurement(time, pos.z);
1156        }
1157    }
1158
1159    #[inline(always)]
1160    pub fn calc_err_x(&self) -> Option<f32> {
1161        self.x_controller
1162            .as_ref()
1163            .map(|controller| controller.calc_err())
1164    }
1165
1166    #[inline(always)]
1167    pub fn calc_err_y(&self) -> Option<f32> {
1168        self.y_controller
1169            .as_ref()
1170            .map(|controller| controller.calc_err())
1171    }
1172
1173    #[inline(always)]
1174    pub fn calc_err_z(&self) -> Option<f32> {
1175        self.z_controller
1176            .as_ref()
1177            .map(|controller| controller.calc_err())
1178    }
1179
1180    #[inline(always)]
1181    pub fn limit_windup_x<F>(&mut self, f: F)
1182    where
1183        F: Fn(&mut f64),
1184    {
1185        if let Some(controller) = &mut self.x_controller {
1186            controller.limit_integral_windup(f);
1187        }
1188    }
1189
1190    #[inline(always)]
1191    pub fn limit_windup_y<F>(&mut self, f: F)
1192    where
1193        F: Fn(&mut f64),
1194    {
1195        if let Some(controller) = &mut self.y_controller {
1196            controller.limit_integral_windup(f);
1197        }
1198    }
1199
1200    #[inline(always)]
1201    pub fn limit_windup_z<F>(&mut self, f: F)
1202    where
1203        F: Fn(&mut f64),
1204    {
1205        if let Some(controller) = &mut self.z_controller {
1206            controller.limit_integral_windup(f);
1207        }
1208    }
1209}
1210
1211/// Get the PID coefficients associated with some Body, since it will likely
1212/// need to be tuned differently for each body type
1213pub fn pid_coefficients(body: &Body) -> Option<(f32, f32, f32)> {
1214    // A pure-proportional controller is { kp: 1.0, ki: 0.0, kd: 0.0 }
1215    match body {
1216        Body::Ship(ship::Body::AirBalloon) => {
1217            let kp = 1.0;
1218            let ki = 0.1;
1219            let kd = 0.8;
1220            Some((kp, ki, kd))
1221        },
1222        Body::Object(object::Body::Crux) => Some((0.9, 0.3, 1.0)),
1223        _ => None,
1224    }
1225}
1226
1227/// Get the PID coefficients (for the airship, for now) by PID modes.
1228pub fn pid_coefficients_for_mode(mode: FlightMode, z_axis: bool) -> (f32, f32, f32) {
1229    match mode {
1230        FlightMode::FlyThrough => {
1231            if z_axis {
1232                (1.0, 0.4, 0.25)
1233            } else {
1234                (0.0, 0.0, 0.0)
1235            }
1236        },
1237        FlightMode::Braking(braking_mode) => match braking_mode {
1238            BrakingMode::Normal => (1.0, 0.3, 0.4),
1239            BrakingMode::Precise => (0.9, 0.3, 1.0),
1240        },
1241    }
1242}