veloren_common/comp/energy.rs
1use crate::comp;
2use serde::{Deserialize, Serialize};
3use specs::{Component, DerefFlaggedStorage};
4use std::ops::Mul;
5
6#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq)]
7/// Energy is represented by u32s within the module, but treated as a float by
8/// the rest of the game.
9// As a general rule, all input and output values to public functions should be
10// floats rather than integers.
11pub struct Energy {
12 // Current and base_max are scaled by 256 within this module compared to what is visible to
13 // outside this module. The scaling is done to allow energy to function as a fixed point while
14 // still having the advantages of being an integer. The scaling of 256 was chosen so that max
15 // energy could be u16::MAX - 1, and then the scaled energy could fit inside an f32 with no
16 // precision loss
17 /// Current energy is how much energy the entity currently has
18 current: u32,
19 /// Base max is the amount of energy the entity has without considering
20 /// temporary modifiers such as buffs
21 base_max: u32,
22 /// Maximum is the amount of energy the entity has after temporary modifiers
23 /// are considered
24 maximum: u32,
25 /// Rate of regeneration per tick. Starts at zero and accelerates.
26 regen_rate: f32,
27}
28
29impl Energy {
30 /// Used when comparisons to energy are needed outside this module.
31 // This value is chosen as anything smaller than this is more precise than our
32 // units of energy.
33 pub const ENERGY_EPSILON: f32 = 0.5 / Self::MAX_SCALED_ENERGY as f32;
34 /// Maximum value allowed for energy before scaling
35 const MAX_ENERGY: u16 = u16::MAX - 1;
36 /// The maximum value allowed for current and maximum energy
37 /// Maximum value is (u16:MAX - 1) * 256, which only requires 24 bits. This
38 /// can fit into an f32 with no loss to precision
39 // Cast to u32 done as u32::from cannot be called inside constant
40 const MAX_SCALED_ENERGY: u32 = Self::MAX_ENERGY as u32 * Self::SCALING_FACTOR_INT;
41 /// The amount energy is scaled by within this module
42 const SCALING_FACTOR_FLOAT: f32 = 256.;
43 const SCALING_FACTOR_INT: u32 = Self::SCALING_FACTOR_FLOAT as u32;
44
45 /// Returns the current value of energy casted to a float
46 pub fn current(&self) -> f32 { self.current as f32 / Self::SCALING_FACTOR_FLOAT }
47
48 /// Returns the base maximum value of energy casted to a float
49 pub fn base_max(&self) -> f32 { self.base_max as f32 / Self::SCALING_FACTOR_FLOAT }
50
51 /// Returns the maximum value of energy casted to a float
52 pub fn maximum(&self) -> f32 { self.maximum as f32 / Self::SCALING_FACTOR_FLOAT }
53
54 /// Returns the fraction of energy an entity has remaining
55 pub fn fraction(&self) -> f32 { self.current() / self.maximum().max(1.0) }
56
57 /// Calculates a new maximum value and returns it if the value differs from
58 /// the current maximum.
59 ///
60 /// Note: The returned value uses an internal format so don't expect it to
61 /// be useful for anything other than a parameter to
62 /// [`Self::update_maximum`].
63 pub fn needs_maximum_update(&self, modifiers: comp::stats::StatsModifier) -> Option<u32> {
64 let maximum = modifiers
65 .compute_maximum(self.base_max())
66 .mul(Self::SCALING_FACTOR_FLOAT)
67 // NaN does not need to be handled here as rust will automatically change to 0 when casting to u32
68 .clamp(0.0, Self::MAX_SCALED_ENERGY as f32) as u32;
69
70 (maximum != self.maximum).then_some(maximum)
71 }
72
73 /// Updates the maximum value for energy.
74 ///
75 /// Note: The accepted `u32` value is in the internal format of this type.
76 /// So attempting to pass values that weren't returned from
77 /// [`Self::needs_maximum_update`] can produce strange or unexpected
78 /// results.
79 pub fn update_internal_integer_maximum(&mut self, maximum: u32) {
80 self.maximum = maximum;
81 // Clamp the current energy to enforce the current <= maximum invariant.
82 self.current = self.current.min(self.maximum);
83 }
84
85 pub fn new(body: comp::Body) -> Self {
86 let energy = u32::from(body.base_energy()) * Self::SCALING_FACTOR_INT;
87 Energy {
88 current: energy,
89 base_max: energy,
90 maximum: energy,
91 regen_rate: 0.0,
92 }
93 }
94
95 /// Returns `true` if the current value is less than the maximum
96 pub fn needs_regen(&self) -> bool { self.current < self.maximum }
97
98 /// Regenerates energy based on the provided acceleration
99 pub fn regen(&mut self, accel: f32, dt: f32) {
100 if self.current < self.maximum {
101 self.change_by(self.regen_rate * dt);
102 self.regen_rate = (self.regen_rate + accel * dt).min(10.0);
103 }
104 }
105
106 /// Checks whether the `regen_rate` is zero or not. Returns true if the
107 /// value is anything other than `0.0`.
108 pub fn needs_regen_rate_reset(&self) -> bool { self.regen_rate != 0.0 }
109
110 /// Resets the energy regeneration rate to zero
111 pub fn reset_regen_rate(&mut self) { self.regen_rate = 0.0 }
112
113 pub fn change_by(&mut self, change: f32) {
114 self.current = (((self.current() + change).clamp(0.0, f32::from(Self::MAX_ENERGY))
115 * Self::SCALING_FACTOR_FLOAT) as u32)
116 .min(self.maximum);
117 }
118
119 #[expect(clippy::result_unit_err)]
120 pub fn try_change_by(&mut self, change: f32) -> Result<(), ()> {
121 let new_val = self.current() + change;
122 if new_val < 0.0 || new_val > self.maximum() {
123 Err(())
124 } else {
125 self.change_by(change);
126 Ok(())
127 }
128 }
129
130 pub fn refresh(&mut self) { self.current = self.maximum; }
131}
132
133impl Component for Energy {
134 type Storage = DerefFlaggedStorage<Self, specs::VecStorage<Self>>;
135}