1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
use crate::comp;
use serde::{Deserialize, Serialize};
use specs::{Component, DerefFlaggedStorage};
use std::ops::Mul;
#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq)]
/// Energy is represented by u32s within the module, but treated as a float by
/// the rest of the game.
// As a general rule, all input and output values to public functions should be
// floats rather than integers.
pub struct Energy {
// Current and base_max are scaled by 256 within this module compared to what is visible to
// outside this module. The scaling is done to allow energy to function as a fixed point while
// still having the advantages of being an integer. The scaling of 256 was chosen so that max
// energy could be u16::MAX - 1, and then the scaled energy could fit inside an f32 with no
// precision loss
/// Current energy is how much energy the entity currently has
current: u32,
/// Base max is the amount of energy the entity has without considering
/// temporary modifiers such as buffs
base_max: u32,
/// Maximum is the amount of energy the entity has after temporary modifiers
/// are considered
maximum: u32,
/// Rate of regeneration per tick. Starts at zero and accelerates.
regen_rate: f32,
}
impl Energy {
/// Used when comparisons to energy are needed outside this module.
// This value is chosen as anything smaller than this is more precise than our
// units of energy.
pub const ENERGY_EPSILON: f32 = 0.5 / Self::MAX_SCALED_ENERGY as f32;
/// Maximum value allowed for energy before scaling
const MAX_ENERGY: u16 = u16::MAX - 1;
/// The maximum value allowed for current and maximum energy
/// Maximum value is (u16:MAX - 1) * 256, which only requires 24 bits. This
/// can fit into an f32 with no loss to precision
// Cast to u32 done as u32::from cannot be called inside constant
const MAX_SCALED_ENERGY: u32 = Self::MAX_ENERGY as u32 * Self::SCALING_FACTOR_INT;
/// The amount energy is scaled by within this module
const SCALING_FACTOR_FLOAT: f32 = 256.;
const SCALING_FACTOR_INT: u32 = Self::SCALING_FACTOR_FLOAT as u32;
/// Returns the current value of energy casted to a float
pub fn current(&self) -> f32 { self.current as f32 / Self::SCALING_FACTOR_FLOAT }
/// Returns the base maximum value of energy casted to a float
pub fn base_max(&self) -> f32 { self.base_max as f32 / Self::SCALING_FACTOR_FLOAT }
/// Returns the maximum value of energy casted to a float
pub fn maximum(&self) -> f32 { self.maximum as f32 / Self::SCALING_FACTOR_FLOAT }
/// Returns the fraction of energy an entity has remaining
pub fn fraction(&self) -> f32 { self.current() / self.maximum().max(1.0) }
/// Calculates a new maximum value and returns it if the value differs from
/// the current maximum.
///
/// Note: The returned value uses an internal format so don't expect it to
/// be useful for anything other than a parameter to
/// [`Self::update_maximum`].
pub fn needs_maximum_update(&self, modifiers: comp::stats::StatsModifier) -> Option<u32> {
let maximum = modifiers
.compute_maximum(self.base_max())
.mul(Self::SCALING_FACTOR_FLOAT)
// NaN does not need to be handled here as rust will automatically change to 0 when casting to u32
.clamp(0.0, Self::MAX_SCALED_ENERGY as f32) as u32;
(maximum != self.maximum).then_some(maximum)
}
/// Updates the maximum value for energy.
///
/// Note: The accepted `u32` value is in the internal format of this type.
/// So attempting to pass values that weren't returned from
/// [`Self::needs_maximum_update`] can produce strange or unexpected
/// results.
pub fn update_internal_integer_maximum(&mut self, maximum: u32) {
self.maximum = maximum;
// Clamp the current energy to enforce the current <= maximum invariant.
self.current = self.current.min(self.maximum);
}
pub fn new(body: comp::Body) -> Self {
let energy = u32::from(body.base_energy()) * Self::SCALING_FACTOR_INT;
Energy {
current: energy,
base_max: energy,
maximum: energy,
regen_rate: 0.0,
}
}
/// Returns `true` if the current value is less than the maximum
pub fn needs_regen(&self) -> bool { self.current < self.maximum }
/// Regenerates energy based on the provided acceleration
pub fn regen(&mut self, accel: f32, dt: f32) {
if self.current < self.maximum {
self.change_by(self.regen_rate * dt);
self.regen_rate = (self.regen_rate + accel * dt).min(10.0);
}
}
/// Checks whether the `regen_rate` is zero or not. Returns true if the
/// value is anything other than `0.0`.
pub fn needs_regen_rate_reset(&self) -> bool { self.regen_rate != 0.0 }
/// Resets the energy regeneration rate to zero
pub fn reset_regen_rate(&mut self) { self.regen_rate = 0.0 }
pub fn change_by(&mut self, change: f32) {
self.current = (((self.current() + change).clamp(0.0, f32::from(Self::MAX_ENERGY))
* Self::SCALING_FACTOR_FLOAT) as u32)
.min(self.maximum);
}
#[allow(clippy::result_unit_err)]
pub fn try_change_by(&mut self, change: f32) -> Result<(), ()> {
let new_val = self.current() + change;
if new_val < 0.0 || new_val > self.maximum() {
Err(())
} else {
self.change_by(change);
Ok(())
}
}
pub fn refresh(&mut self) { self.current = self.maximum; }
}
impl Component for Energy {
type Storage = DerefFlaggedStorage<Self, specs::VecStorage<Self>>;
}