1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
use crate::{
    astar::{Astar, PathResult},
    terrain::Block,
    vol::{BaseVol, ReadVol},
};
use common_base::span;
use fxhash::FxBuildHasher;
#[cfg(feature = "rrt_pathfinding")]
use hashbrown::HashMap;
#[cfg(feature = "rrt_pathfinding")]
use kiddo::{float::kdtree::KdTree, nearest_neighbour::NearestNeighbour, SquaredEuclidean}; /* For RRT paths (disabled for now) */
#[cfg(feature = "rrt_pathfinding")]
use rand::{
    distributions::{Distribution, Uniform},
    prelude::IteratorRandom,
};
use rand::{thread_rng, Rng};
#[cfg(feature = "rrt_pathfinding")]
use std::f32::consts::PI;
use std::iter::FromIterator;
use vek::*;

// Path

#[derive(Clone, Debug)]
pub struct Path<T> {
    pub nodes: Vec<T>,
}

impl<T> Default for Path<T> {
    fn default() -> Self {
        Self {
            nodes: Vec::default(),
        }
    }
}

impl<T> FromIterator<T> for Path<T> {
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        Self {
            nodes: iter.into_iter().collect(),
        }
    }
}

impl<T> IntoIterator for Path<T> {
    type IntoIter = std::vec::IntoIter<T>;
    type Item = T;

    fn into_iter(self) -> Self::IntoIter { self.nodes.into_iter() }
}

impl<T> Path<T> {
    pub fn is_empty(&self) -> bool { self.nodes.is_empty() }

    pub fn len(&self) -> usize { self.nodes.len() }

    pub fn iter(&self) -> impl Iterator<Item = &T> { self.nodes.iter() }

    pub fn start(&self) -> Option<&T> { self.nodes.first() }

    pub fn end(&self) -> Option<&T> { self.nodes.last() }

    pub fn nodes(&self) -> &[T] { &self.nodes }
}

// Route: A path that can be progressed along

#[derive(Default, Clone, Debug)]
pub struct Route {
    path: Path<Vec3<i32>>,
    next_idx: usize,
}

impl From<Path<Vec3<i32>>> for Route {
    fn from(path: Path<Vec3<i32>>) -> Self { Self { path, next_idx: 0 } }
}

pub struct TraversalConfig {
    /// The distance to a node at which node is considered visited.
    pub node_tolerance: f32,
    /// The slowdown factor when following corners.
    /// 0.0 = no slowdown on corners, 1.0 = total slowdown on corners.
    pub slow_factor: f32,
    /// Whether the agent is currently on the ground.
    pub on_ground: bool,
    /// Whether the agent is currently in water.
    pub in_liquid: bool,
    /// The distance to the target below which it is considered reached.
    pub min_tgt_dist: f32,
    /// Whether the agent can climb.
    pub can_climb: bool,
    /// Whether the agent can fly.
    pub can_fly: bool,
    /// Whether chunk containing target position is currently loaded
    pub is_target_loaded: bool,
}

const DIAGONALS: [Vec2<i32>; 8] = [
    Vec2::new(1, 0),
    Vec2::new(1, 1),
    Vec2::new(0, 1),
    Vec2::new(-1, 1),
    Vec2::new(-1, 0),
    Vec2::new(-1, -1),
    Vec2::new(0, -1),
    Vec2::new(1, -1),
];

impl Route {
    pub fn path(&self) -> &Path<Vec3<i32>> { &self.path }

    pub fn next(&self, i: usize) -> Option<Vec3<i32>> {
        self.path.nodes.get(self.next_idx + i).copied()
    }

    pub fn is_finished(&self) -> bool { self.next(0).is_none() }

    pub fn traverse<V>(
        &mut self,
        vol: &V,
        pos: Vec3<f32>,
        vel: Vec3<f32>,
        traversal_cfg: &TraversalConfig,
    ) -> Option<(Vec3<f32>, f32)>
    where
        V: BaseVol<Vox = Block> + ReadVol,
    {
        let (next0, next1, next_tgt, be_precise) = loop {
            // If we've reached the end of the path, stop
            let next0 = self.next(0)?;
            let next1 = self.next(1).unwrap_or(next0);

            // Stop using obstructed paths
            if !walkable(vol, next0) || !walkable(vol, next1) {
                return None;
            }

            // If, in any direction, there is a column of open air of several blocks
            let open_space_nearby = DIAGONALS.iter().any(|pos| {
                (-1..2).all(|z| {
                    vol.get(next0 + Vec3::new(pos.x, pos.y, z))
                        .map(|b| !b.is_solid())
                        .unwrap_or(false)
                })
            });

            // If, in any direction, there is a solid wall
            let wall_nearby = DIAGONALS.iter().any(|pos| {
                (0..2).all(|z| {
                    vol.get(next0 + Vec3::new(pos.x, pos.y, z))
                        .map(|b| b.is_solid())
                        .unwrap_or(true)
                })
            });

            // Unwalkable obstacles, such as walls or open space can affect path-finding
            let be_precise = open_space_nearby | wall_nearby;

            // Map position of node to middle of block
            let next_tgt = next0.map(|e| e as f32) + Vec3::new(0.5, 0.5, 0.0);
            let closest_tgt = next_tgt.map2(pos, |tgt, pos| pos.clamped(tgt.floor(), tgt.ceil()));
            // Determine whether we're close enough to the next to to consider it completed
            let dist_sqrd = pos.xy().distance_squared(closest_tgt.xy());
            if dist_sqrd
                < traversal_cfg.node_tolerance.powi(2)
                    * if be_precise {
                        0.25
                    } else if traversal_cfg.in_liquid {
                        2.5
                    } else {
                        1.0
                    }
                && (((pos.z - closest_tgt.z > 1.2 || (pos.z - closest_tgt.z > -0.2 && traversal_cfg.on_ground))
                    && (pos.z - closest_tgt.z < 1.2 || (pos.z - closest_tgt.z < 2.9 && vel.z < -0.05))
                    && vel.z <= 0.0
                    // Only consider the node reached if there's nothing solid between us and it
                    && (vol
                        .ray(pos + Vec3::unit_z() * 1.5, closest_tgt + Vec3::unit_z() * 1.5)
                        .until(Block::is_solid)
                        .cast()
                        .0
                        > pos.distance(closest_tgt) * 0.9 || dist_sqrd < 0.5)
                    && self.next_idx < self.path.len())
                    || (traversal_cfg.in_liquid
                        && pos.z < closest_tgt.z + 0.8
                        && pos.z > closest_tgt.z))
            {
                // Node completed, move on to the next one
                self.next_idx += 1;
            } else {
                // The next node hasn't been reached yet, use it as a target
                break (next0, next1, next_tgt, be_precise);
            }
        };

        fn gradient(line: LineSegment2<f32>) -> f32 {
            let r = (line.start.y - line.end.y) / (line.start.x - line.end.x);
            if r.is_nan() { 100000.0 } else { r }
        }

        fn intersect(a: LineSegment2<f32>, b: LineSegment2<f32>) -> Option<Vec2<f32>> {
            let ma = gradient(a);
            let mb = gradient(b);

            let ca = a.start.y - ma * a.start.x;
            let cb = b.start.y - mb * b.start.x;

            if (ma - mb).abs() < 0.0001 || (ca - cb).abs() < 0.0001 {
                None
            } else {
                let x = (cb - ca) / (ma - mb);
                let y = ma * x + ca;

                Some(Vec2::new(x, y))
            }
        }

        // We don't always want to aim for the centre of block since this can create
        // jerky zig-zag movement. This function attempts to find a position
        // inside a target block's area that aligned nicely with our velocity.
        // This has a twofold benefit:
        //
        // 1. Entities can move at any angle when
        // running on a flat surface
        //
        // 2. We don't have to search diagonals when
        // pathfinding - cartesian positions are enough since this code will
        // make the entity move smoothly along them
        let corners = [
            Vec2::new(0, 0),
            Vec2::new(1, 0),
            Vec2::new(1, 1),
            Vec2::new(0, 1),
            Vec2::new(0, 0), // Repeated start
        ];

        let vel_line = LineSegment2 {
            start: pos.xy(),
            end: pos.xy() + vel.xy() * 100.0,
        };

        let align = |block_pos: Vec3<i32>, precision: f32| {
            let lerp_block =
                |x, precision| Lerp::lerp(x, block_pos.xy().map(|e| e as f32), precision);

            (0..4)
                .filter_map(|i| {
                    let edge_line = LineSegment2 {
                        start: lerp_block(
                            (block_pos.xy() + corners[i]).map(|e| e as f32),
                            precision,
                        ),
                        end: lerp_block(
                            (block_pos.xy() + corners[i + 1]).map(|e| e as f32),
                            precision,
                        ),
                    };
                    intersect(vel_line, edge_line).filter(|intersect| {
                        intersect
                            .clamped(
                                block_pos.xy().map(|e| e as f32),
                                block_pos.xy().map(|e| e as f32 + 1.0),
                            )
                            .distance_squared(*intersect)
                            < 0.001
                    })
                })
                .min_by_key(|intersect: &Vec2<f32>| {
                    (intersect.distance_squared(vel_line.end) * 1000.0) as i32
                })
                .unwrap_or_else(|| {
                    (0..2)
                        .flat_map(|i| (0..2).map(move |j| Vec2::new(i, j)))
                        .map(|rpos| block_pos + rpos)
                        .map(|block_pos| {
                            let block_posf = block_pos.xy().map(|e| e as f32);
                            let proj = vel_line.projected_point(block_posf);
                            let clamped = lerp_block(
                                proj.clamped(
                                    block_pos.xy().map(|e| e as f32),
                                    block_pos.xy().map(|e| e as f32),
                                ),
                                precision,
                            );

                            (proj.distance_squared(clamped), clamped)
                        })
                        .min_by_key(|(d2, _)| (d2 * 1000.0) as i32)
                        .unwrap()
                        .1
                })
        };

        let bez = CubicBezier2 {
            start: pos.xy(),
            ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_default() * 1.0,
            ctrl1: align(next0, 1.0),
            end: align(next1, 1.0),
        };

        // Use a cubic spline of the next few targets to come up with a sensible target
        // position. We want to use a position that gives smooth movement but is
        // also accurate enough to avoid the agent getting stuck under ledges or
        // falling off walls.
        let next_dir = bez
            .evaluate_derivative(0.85)
            .try_normalized()
            .unwrap_or_default();
        let straight_factor = next_dir
            .dot(vel.xy().try_normalized().unwrap_or(next_dir))
            .max(0.0)
            .powi(2);

        let bez = CubicBezier2 {
            start: pos.xy(),
            ctrl0: pos.xy() + vel.xy().try_normalized().unwrap_or_default() * 1.0,
            ctrl1: align(
                next0,
                (1.0 - if (next0.z as f32 - pos.z).abs() < 0.25 && !be_precise {
                    straight_factor
                } else {
                    0.0
                })
                .max(0.1),
            ),
            end: align(next1, 1.0),
        };

        let tgt2d = bez.evaluate(if (next0.z as f32 - pos.z).abs() < 0.25 {
            0.25
        } else {
            0.5
        });
        let tgt = if be_precise {
            next_tgt
        } else {
            Vec3::from(tgt2d) + Vec3::unit_z() * next_tgt.z
        };

        Some((
            tgt - pos,
            // Control the entity's speed to hopefully stop us falling off walls on sharp
            // corners. This code is very imperfect: it does its best but it
            // can still fail for particularly fast entities.
            straight_factor * traversal_cfg.slow_factor + (1.0 - traversal_cfg.slow_factor),
        ))
        .filter(|(bearing, _)| bearing.z < 2.1)
    }
}

/// A self-contained system that attempts to chase a moving target, only
/// performing pathfinding if necessary
#[derive(Default, Clone, Debug)]
pub struct Chaser {
    last_search_tgt: Option<Vec3<f32>>,
    /// `bool` indicates whether the Route is a complete route to the target
    route: Option<(Route, bool)>,
    /// We use this hasher (FxHash) because:
    /// (1) we don't care about DDOS attacks (We can use FxHash);
    /// (2) we want this to be constant across compiles because of hot-reloading
    /// (Ruling out AAHash);
    astar: Option<Astar<Vec3<i32>, FxBuildHasher>>,
}

impl Chaser {
    /// Returns bearing and speed
    /// Bearing is a Vec3<f32> dictating the direction of movement
    /// Speed is an f32 between 0.0 and 1.0
    pub fn chase<V>(
        &mut self,
        vol: &V,
        pos: Vec3<f32>,
        vel: Vec3<f32>,
        tgt: Vec3<f32>,
        traversal_cfg: TraversalConfig,
    ) -> Option<(Vec3<f32>, f32)>
    where
        V: BaseVol<Vox = Block> + ReadVol,
    {
        span!(_guard, "chase", "Chaser::chase");
        let pos_to_tgt = pos.distance(tgt);

        // If we're already close to the target then there's nothing to do
        let end = self
            .route
            .as_ref()
            .and_then(|(r, _)| r.path.end().copied())
            .map(|e| e.map(|e| e as f32 + 0.5))
            .unwrap_or(tgt);
        if ((pos - end) * Vec3::new(1.0, 1.0, 2.0)).magnitude_squared()
            < traversal_cfg.min_tgt_dist.powi(2)
        {
            self.route = None;
            return None;
        }

        let bearing = if let Some((end, complete)) = self
            .route
            .as_ref()
            .and_then(|(r, complete)| Some((r.path().end().copied()?, *complete)))
        {
            let end_to_tgt = end.map(|e| e as f32).distance(tgt);
            // If the target has moved significantly since the path was generated then it's
            // time to search for a new path. Also, do this randomly from time
            // to time to avoid any edge cases that cause us to get stuck. In
            // theory this shouldn't happen, but in practice the world is full
            // of unpredictable obstacles that are more than willing to mess up
            // our day. TODO: Come up with a better heuristic for this
            if end_to_tgt > pos_to_tgt * 0.3 + 5.0 && complete && traversal_cfg.is_target_loaded {
                None
            } else if thread_rng().gen::<f32>() < 0.01 {
                self.route = None;
                None
            } else {
                self.route
                    .as_mut()
                    .and_then(|(r, _)| r.traverse(vol, pos, vel, &traversal_cfg))
            }
        } else {
            // There is no route found yet
            None
        };

        // If a bearing has already been determined, use that
        if let Some((bearing, speed)) = bearing {
            Some((bearing, speed))
        } else {
            // Since no bearing has been determined yet, a new route will be
            // calculated if the target has moved, pathfinding is not complete,
            // or there is no route
            let tgt_dir = (tgt - pos).xy().try_normalized().unwrap_or_default();

            // Only search for a path if the target has moved from their last position. We
            // don't want to be thrashing the pathfinding code for targets that
            // we're unable to access!
            if self
                .last_search_tgt
                .map(|last_tgt| last_tgt.distance(tgt) > pos_to_tgt * 0.15 + 5.0)
                .unwrap_or(true)
                || self.astar.is_some()
                || self.route.is_none()
                || !traversal_cfg.is_target_loaded
            {
                self.last_search_tgt = Some(tgt);

                // NOTE: Enable air paths when air braking has been figured out
                let (path, complete) = /*if cfg!(feature = "rrt_pathfinding") && traversal_cfg.can_fly {
                    find_air_path(vol, pos, tgt, &traversal_cfg)
                } else */{
                    find_path(&mut self.astar, vol, pos, tgt, &traversal_cfg)
                };

                self.route = path.map(|path| {
                    let start_index = path
                        .iter()
                        .enumerate()
                        .min_by_key(|(_, node)| {
                            node.map(|e| e as f32).distance_squared(pos + tgt_dir) as i32
                        })
                        .map(|(idx, _)| idx);

                    (
                        Route {
                            path,
                            next_idx: start_index.unwrap_or(0),
                        },
                        complete,
                    )
                });
            }
            // Start traversing the new route if it exists
            if let Some(bearing) = self
                .route
                .as_mut()
                .and_then(|(r, _)| r.traverse(vol, pos, vel, &traversal_cfg))
            {
                Some(bearing)
            } else {
                // At this point no route is available and no bearing
                // has been determined, so we start sampling terrain.
                // Check for falling off walls and try moving straight
                // towards the target if falling is not a danger
                let walking_towards_edge = (-8..2).all(|z| {
                    vol.get(
                        (pos + Vec3::<f32>::from(tgt_dir) * 2.5).map(|e| e as i32)
                            + Vec3::unit_z() * z,
                    )
                    .map(|b| b.is_air())
                    .unwrap_or(false)
                });

                // Enable when airbraking/flight is figured out
                /*if traversal_cfg.can_fly {
                    Some(((tgt - pos) , 1.0))
                } else */
                if traversal_cfg.can_fly {
                    Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.5), 1.0))
                } else if !walking_towards_edge {
                    Some(((tgt - pos) * Vec3::new(1.0, 1.0, 0.0), 1.0))
                } else {
                    // This is unfortunately where an NPC will stare blankly
                    // into space. No route has been found and no temporary
                    // bearing would suffice. Hopefully a route will be found
                    // in the coming ticks.
                    None
                }
            }
        }
    }
}

fn walkable<V>(vol: &V, pos: Vec3<i32>) -> bool
where
    V: BaseVol<Vox = Block> + ReadVol,
{
    let below = vol
        .get(pos - Vec3::unit_z())
        .ok()
        .copied()
        .unwrap_or_else(Block::empty);
    let a = vol.get(pos).ok().copied().unwrap_or_else(Block::empty);
    let b = vol
        .get(pos + Vec3::unit_z())
        .ok()
        .copied()
        .unwrap_or_else(Block::empty);

    let on_ground = below.is_filled();
    let in_liquid = a.is_liquid();
    (on_ground || in_liquid) && !a.is_solid() && !b.is_solid()
}

/// Attempt to search for a path to a target, returning the path (if one was
/// found) and whether it is complete (reaches the target)
fn find_path<V>(
    astar: &mut Option<Astar<Vec3<i32>, FxBuildHasher>>,
    vol: &V,
    startf: Vec3<f32>,
    endf: Vec3<f32>,
    traversal_cfg: &TraversalConfig,
) -> (Option<Path<Vec3<i32>>>, bool)
where
    V: BaseVol<Vox = Block> + ReadVol,
{
    let is_walkable = |pos: &Vec3<i32>| walkable(vol, *pos);
    let get_walkable_z = |pos| {
        let mut z_incr = 0;
        for _ in 0..32 {
            let test_pos = pos + Vec3::unit_z() * z_incr;
            if is_walkable(&test_pos) {
                return Some(test_pos);
            }
            z_incr = -z_incr + i32::from(z_incr <= 0);
        }
        None
    };

    let (start, end) = match (
        get_walkable_z(startf.map(|e| e.floor() as i32)),
        get_walkable_z(endf.map(|e| e.floor() as i32)),
    ) {
        (Some(start), Some(end)) => (start, end),

        // Special case for partially loaded path finding
        (Some(start), None) if !traversal_cfg.is_target_loaded => {
            (start, endf.map(|e| e.floor() as i32))
        },

        _ => return (None, false),
    };

    let heuristic = |pos: &Vec3<i32>| (pos.distance_squared(end) as f32).sqrt();
    let transition = |a: Vec3<i32>, b: Vec3<i32>| {
        let crow_line = LineSegment2 {
            start: startf.xy(),
            end: endf.xy(),
        };

        // Modify the heuristic a little in order to prefer paths that take us on a
        // straight line toward our target. This means we get smoother movement.
        1.0 + crow_line.distance_to_point(b.xy().map(|e| e as f32)) * 0.025
            + (b.z - a.z - 1).max(0) as f32 * 10.0
    };
    let neighbors = |pos: &Vec3<i32>| {
        let pos = *pos;
        const DIRS: [Vec3<i32>; 17] = [
            Vec3::new(0, 1, 0),   // Forward
            Vec3::new(0, 1, 1),   // Forward upward
            Vec3::new(0, 1, -1),  // Forward downward
            Vec3::new(0, 1, -2),  // Forward downwardx2
            Vec3::new(1, 0, 0),   // Right
            Vec3::new(1, 0, 1),   // Right upward
            Vec3::new(1, 0, -1),  // Right downward
            Vec3::new(1, 0, -2),  // Right downwardx2
            Vec3::new(0, -1, 0),  // Backwards
            Vec3::new(0, -1, 1),  // Backward Upward
            Vec3::new(0, -1, -1), // Backward downward
            Vec3::new(0, -1, -2), // Backward downwardx2
            Vec3::new(-1, 0, 0),  // Left
            Vec3::new(-1, 0, 1),  // Left upward
            Vec3::new(-1, 0, -1), // Left downward
            Vec3::new(-1, 0, -2), // Left downwardx2
            Vec3::new(0, 0, -1),  // Downwards
        ];

        const JUMPS: [Vec3<i32>; 4] = [
            Vec3::new(0, 1, 2),  // Forward Upwardx2
            Vec3::new(1, 0, 2),  // Right Upwardx2
            Vec3::new(0, -1, 2), // Backward Upwardx2
            Vec3::new(-1, 0, 2), // Left Upwardx2
        ];

        // let walkable = [
        //     is_walkable(&(pos + Vec3::new(1, 0, 0))),
        //     is_walkable(&(pos + Vec3::new(-1, 0, 0))),
        //     is_walkable(&(pos + Vec3::new(0, 1, 0))),
        //     is_walkable(&(pos + Vec3::new(0, -1, 0))),
        // ];

        // const DIAGONALS: [(Vec3<i32>, [usize; 2]); 8] = [
        //     (Vec3::new(1, 1, 0), [0, 2]),
        //     (Vec3::new(-1, 1, 0), [1, 2]),
        //     (Vec3::new(1, -1, 0), [0, 3]),
        //     (Vec3::new(-1, -1, 0), [1, 3]),
        //     (Vec3::new(1, 1, 1), [0, 2]),
        //     (Vec3::new(-1, 1, 1), [1, 2]),
        //     (Vec3::new(1, -1, 1), [0, 3]),
        //     (Vec3::new(-1, -1, 1), [1, 3]),
        // ];

        DIRS.iter()
            .chain(
                Some(JUMPS.iter())
                    .filter(|_| {
                        vol.get(pos - Vec3::unit_z())
                            .map(|b| !b.is_liquid())
                            .unwrap_or(traversal_cfg.is_target_loaded)
                            || traversal_cfg.can_climb
                            || traversal_cfg.can_fly
                    })
                    .into_iter()
                    .flatten(),
            )
            .map(move |dir| (pos, dir))
            .filter(move |(pos, dir)| {
                (traversal_cfg.can_fly || is_walkable(pos) && is_walkable(&(*pos + **dir)))
                    && ((dir.z < 1
                        || vol
                            .get(pos + Vec3::unit_z() * 2)
                            .map(|b| !b.is_solid())
                            .unwrap_or(traversal_cfg.is_target_loaded))
                        && (dir.z < 2
                            || vol
                                .get(pos + Vec3::unit_z() * 3)
                                .map(|b| !b.is_solid())
                                .unwrap_or(traversal_cfg.is_target_loaded))
                        && (dir.z >= 0
                            || vol
                                .get(pos + *dir + Vec3::unit_z() * 2)
                                .map(|b| !b.is_solid())
                                .unwrap_or(traversal_cfg.is_target_loaded)))
            })
            .map(|(pos, dir)| {
                let destination = pos + dir;
                (destination, transition(pos, destination))
            })
        // .chain(
        //     DIAGONALS
        //         .iter()
        //         .filter(move |(dir, [a, b])| {
        //             is_walkable(&(pos + *dir)) && walkable[*a] &&
        // walkable[*b]         })
        //         .map(move |(dir, _)| pos + *dir),
        // )
    };

    let satisfied = |pos: &Vec3<i32>| pos == &end;

    let mut new_astar = match astar.take() {
        None => Astar::new(
            if traversal_cfg.is_target_loaded {
                // Normal mode
                25_000
            } else {
                // Most of the times we would need to plot within current chunk,
                // so half of intra-site limit should be enough in most cases
                500
            },
            start,
            FxBuildHasher::default(),
        ),
        Some(astar) => astar,
    };

    let path_result = new_astar.poll(100, heuristic, neighbors, satisfied);

    match path_result {
        PathResult::Path(path, _cost) => (Some(path), true),
        PathResult::None(path) => (Some(path), false),
        PathResult::Exhausted(path) => (Some(path), false),

        PathResult::Pending => {
            // Keep astar for the next iteration
            *astar = Some(new_astar);

            (None, false)
        },
    }
}

// Enable when airbraking/sensible flight is a thing
#[cfg(feature = "rrt_pathfinding")]
fn find_air_path<V>(
    vol: &V,
    startf: Vec3<f32>,
    endf: Vec3<f32>,
    traversal_cfg: &TraversalConfig,
) -> (Option<Path<Vec3<i32>>>, bool)
where
    V: BaseVol<Vox = Block> + ReadVol,
{
    let radius = traversal_cfg.node_tolerance;
    let total_dist_sqrd = startf.distance_squared(endf);
    // First check if a straight line path works
    if vol
        .ray(startf + Vec3::unit_z(), endf + Vec3::unit_z())
        .until(Block::is_opaque)
        .cast()
        .0
        .powi(2)
        >= total_dist_sqrd
    {
        let mut path = Vec::new();
        path.push(endf.map(|e| e.floor() as i32));
        let connect = true;
        (Some(path.into_iter().collect()), connect)
    // Else use RRTs
    } else {
        let is_traversable = |start: &Vec3<f32>, end: &Vec3<f32>| {
            vol.ray(*start, *end)
                .until(Block::is_solid)
                .cast()
                .0
                .powi(2)
                > (*start).distance_squared(*end)
            //vol.get(*pos).ok().copied().unwrap_or_else(Block::empty).
            // is_fluid();
        };
        informed_rrt_connect(vol, startf, endf, is_traversable, radius)
    }
}

/// Attempts to find a path from a start to the end using an informed
/// RRT-Connect algorithm. A point is sampled from a bounding spheroid
/// between the start and end. Two separate rapidly exploring random
/// trees extend toward the sampled point. Nodes are stored in k-d trees
/// for quicker nearest node calculations. Points are sampled until the
/// trees connect. A final path is then reconstructed from the nodes.
/// This pathfinding algorithm is more appropriate for 3D pathfinding
/// with wider gaps, such as flying through a forest than for terrain
/// with narrow gaps, such as navigating a maze.
/// Returns a path and whether that path is complete or not.
#[cfg(feature = "rrt_pathfinding")]
fn informed_rrt_connect<V>(
    vol: &V,
    startf: Vec3<f32>,
    endf: Vec3<f32>,
    is_valid_edge: impl Fn(&Vec3<f32>, &Vec3<f32>) -> bool,
    radius: f32,
) -> (Option<Path<Vec3<i32>>>, bool)
where
    V: BaseVol<Vox = Block> + ReadVol,
{
    const MAX_POINTS: usize = 7000;
    let mut path = Vec::new();

    // Each tree has a vector of nodes
    let mut node_index1: usize = 0;
    let mut node_index2: usize = 0;
    let mut nodes1 = Vec::new();
    let mut nodes2 = Vec::new();

    // The parents hashmap stores nodes and their parent nodes as pairs to
    // retrace the complete path once the two RRTs connect
    let mut parents1 = HashMap::new();
    let mut parents2 = HashMap::new();

    // The path vector stores the path from the appropriate terminal to the
    // connecting node or vice versa
    let mut path1 = Vec::new();
    let mut path2 = Vec::new();

    // K-d trees are used to find the closest nodes rapidly
    let mut kdtree1: KdTree<f32, usize, 3, 32, u32> = KdTree::with_capacity(MAX_POINTS);
    let mut kdtree2: KdTree<f32, usize, 3, 32, u32> = KdTree::with_capacity(MAX_POINTS);

    // Add the start as the first node of the first k-d tree
    kdtree1.add(&[startf.x, startf.y, startf.z], node_index1);
    nodes1.push(startf);
    node_index1 += 1;

    // Add the end as the first node of the second k-d tree
    kdtree2.add(&[endf.x, endf.y, endf.z], node_index2);
    nodes2.push(endf);
    node_index2 += 1;

    let mut connection1_idx = 0;
    let mut connection2_idx = 0;

    let mut connect = false;

    // Scalar non-dimensional value that is proportional to the size of the
    // sample spheroid volume. This increases in value until a path is found.
    let mut search_parameter = 0.01;

    // Maximum of MAX_POINTS iterations
    for _i in 0..MAX_POINTS {
        if connect {
            break;
        }

        // Sample a point on the bounding spheroid
        let (sampled_point1, sampled_point2) = {
            let point = point_on_prolate_spheroid(startf, endf, search_parameter);
            (point, point)
        };

        // Find the nearest nodes to the the sampled point
        let nearest_index1 = kdtree1
            .nearest_one::<SquaredEuclidean>(&[
                sampled_point1.x,
                sampled_point1.y,
                sampled_point1.z,
            ])
            .item;
        let nearest_index2 = kdtree2
            .nearest_one::<SquaredEuclidean>(&[
                sampled_point2.x,
                sampled_point2.y,
                sampled_point2.z,
            ])
            .item;
        let nearest1 = nodes1[nearest_index1];
        let nearest2 = nodes2[nearest_index2];

        // Extend toward the sampled point from the nearest node of each tree
        let new_point1 = nearest1 + (sampled_point1 - nearest1).normalized().map(|a| a * radius);
        let new_point2 = nearest2 + (sampled_point2 - nearest2).normalized().map(|a| a * radius);

        // Ensure the new nodes are valid/traversable
        if is_valid_edge(&nearest1, &new_point1) {
            kdtree1.add(&[new_point1.x, new_point1.y, new_point1.z], node_index1);
            nodes1.push(new_point1);
            parents1.insert(node_index1, nearest_index1);
            node_index1 += 1;
            // Check if the trees connect
            let NearestNeighbour {
                distance: check,
                item: index,
            } = kdtree2.nearest_one::<SquaredEuclidean>(&[
                new_point1.x,
                new_point1.y,
                new_point1.z,
            ]);
            if check < radius {
                let connection = nodes2[index];
                connection2_idx = index;
                nodes1.push(connection);
                connection1_idx = nodes1.len() - 1;
                parents1.insert(node_index1, node_index1 - 1);
                connect = true;
            }
        }

        // Repeat the validity check for the second tree
        if is_valid_edge(&nearest2, &new_point2) {
            kdtree2.add(&[new_point2.x, new_point2.y, new_point1.z], node_index2);
            nodes2.push(new_point2);
            parents2.insert(node_index2, nearest_index2);
            node_index2 += 1;
            // Again check for a connection
            let NearestNeighbour {
                distance: check,
                item: index,
            } = kdtree1.nearest_one::<SquaredEuclidean>(&[
                new_point2.x,
                new_point2.y,
                new_point1.z,
            ]);
            if check < radius {
                let connection = nodes1[index];
                connection1_idx = index;
                nodes2.push(connection);
                connection2_idx = nodes2.len() - 1;
                parents2.insert(node_index2, node_index2 - 1);
                connect = true;
            }
        }
        // Increase the search parameter to widen the sample volume
        search_parameter += 0.02;
    }

    if connect {
        // Construct paths from the connection node to the start and end
        let mut current_node_index1 = connection1_idx;
        while current_node_index1 > 0 {
            current_node_index1 = *parents1.get(&current_node_index1).unwrap_or(&0);
            path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
        }
        let mut current_node_index2 = connection2_idx;
        while current_node_index2 > 0 {
            current_node_index2 = *parents2.get(&current_node_index2).unwrap_or(&0);
            path2.push(nodes2[current_node_index2].map(|e| e.floor() as i32));
        }
        // Join the two paths together in the proper order and remove duplicates
        path1.pop();
        path1.reverse();
        path.append(&mut path1);
        path.append(&mut path2);
        path.dedup();
    } else {
        // If the trees did not connect, construct a path from the start to
        // the closest node to the end
        let mut current_node_index1 = kdtree1
            .nearest_one::<SquaredEuclidean>(&[endf.x, endf.y, endf.z])
            .item;
        // Attempt to pick a node other than the start node
        for _i in 0..3 {
            if current_node_index1 == 0
                || nodes1[current_node_index1].distance_squared(startf) < 4.0
            {
                if let Some(index) = parents1.values().into_iter().choose(&mut thread_rng()) {
                    current_node_index1 = *index;
                } else {
                    break;
                }
            } else {
                break;
            }
        }
        path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
        // Construct the path
        while current_node_index1 != 0 && nodes1[current_node_index1].distance_squared(startf) > 4.0
        {
            current_node_index1 = *parents1.get(&current_node_index1).unwrap_or(&0);
            path1.push(nodes1[current_node_index1].map(|e| e.floor() as i32));
        }

        path1.reverse();
        path.append(&mut path1);
    }
    let mut new_path = Vec::new();
    let mut node = path[0];
    new_path.push(node);
    let mut node_idx = 0;
    let num_nodes = path.len();
    let end = path[num_nodes - 1];
    while node != end {
        let next_idx = if node_idx + 4 > num_nodes - 1 {
            num_nodes - 1
        } else {
            node_idx + 4
        };
        let next_node = path[next_idx];
        let start_pos = node.map(|e| e as f32 + 0.5);
        let end_pos = next_node.map(|e| e as f32 + 0.5);
        if vol
            .ray(start_pos, end_pos)
            .until(Block::is_solid)
            .cast()
            .0
            .powi(2)
            > (start_pos).distance_squared(end_pos)
        {
            node_idx = next_idx;
            new_path.push(next_node);
        } else {
            node_idx += 1;
        }
        node = path[node_idx];
    }
    path = new_path;
    (Some(path.into_iter().collect()), connect)
}

/// Returns a random point within a radially symmetrical ellipsoid with given
/// foci and a `search parameter` to determine the size of the ellipse beyond
/// the foci. Technically the point is within a prolate spheroid translated and
/// rotated to the proper place in cartesian space.
/// The search_parameter is a float that relates to the length of the string for
/// a two dimensional ellipse or the size of the ellipse beyond the foci. In
/// this case that analogy still holds as the ellipse is radially symmetrical
/// along the axis between the foci. The value of the search parameter must be
/// greater than zero. In order to increase the sample area, the
/// search_parameter should be increased linearly as the search continues.
#[cfg(feature = "rrt_pathfinding")]
pub fn point_on_prolate_spheroid(
    focus1: Vec3<f32>,
    focus2: Vec3<f32>,
    search_parameter: f32,
) -> Vec3<f32> {
    let mut rng = thread_rng();
    // Uniform distribution
    let range = Uniform::from(0.0..1.0);

    // Midpoint is used as the local origin
    let midpoint = 0.5 * (focus1 + focus2);
    // Radius between the start and end of the path
    let radius: f32 = focus1.distance(focus2);
    // The linear eccentricity of an ellipse is the distance from the origin to a
    // focus A prolate spheroid is a half-ellipse rotated for a full revolution
    // which is why ellipse variables are used frequently in this function
    let linear_eccentricity: f32 = 0.5 * radius;

    // For an ellipsoid, three variables determine the shape: a, b, and c.
    // These are the distance from the center/origin to the surface on the
    // x, y, and z axes, respectively.
    // For a prolate spheroid a and b are equal.
    // c is determined by adding the search parameter to the linear eccentricity.
    // As the search parameter increases the size of the spheroid increases
    let c: f32 = linear_eccentricity + search_parameter;
    // The width is calculated to prioritize increasing width over length of
    // the ellipsoid
    let a: f32 = (c.powi(2) - linear_eccentricity.powi(2)).powf(0.5);
    // The width should be the same in both the x and y directions
    let b: f32 = a;

    // The parametric spherical equation for an ellipsoid measuring from the
    // center point is as follows:
    // x = a * cos(theta) * cos(lambda)
    // y = b * cos(theta) * sin(lambda)
    // z = c * sin(theta)
    //
    // where     -0.5 * PI <= theta <= 0.5 * PI
    // and       0.0 <= lambda < 2.0 * PI
    //
    // Select these two angles using the uniform distribution defined at the
    // beginning of the function from 0.0 to 1.0
    let rtheta: f32 = PI * range.sample(&mut rng) - 0.5 * PI;
    let lambda: f32 = 2.0 * PI * range.sample(&mut rng);
    // Select a point on the surface of the ellipsoid
    let point = Vec3::new(
        a * rtheta.cos() * lambda.cos(),
        b * rtheta.cos() * lambda.sin(),
        c * rtheta.sin(),
    );
    // NOTE: Theoretically we should sample a point within the spheroid
    // requiring selecting a point along the radius. In my tests selecting
    // a point *on the surface* of the spheroid results in sampling that is
    // "good enough". The following code is commented out to reduce expense.
    //let surface_point = Vec3::new(a * rtheta.cos() * lambda.cos(), b *
    // rtheta.cos() * lambda.sin(), c * rtheta.sin()); let magnitude =
    // surface_point.magnitude(); let direction = surface_point.normalized();
    //// Randomly select a point along the vector to the previously selected surface
    //// point using the uniform distribution
    //let point = magnitude * range.sample(&mut rng) * direction;

    // Now that a point has been selected in local space, it must be rotated and
    // translated into global coordinates
    // NOTE: Don't rotate about the z axis as the point is already randomly
    // selected about the z axis
    //let dx = focus2.x - focus1.x;
    //let dy = focus2.y - focus1.y;
    let dz = focus2.z - focus1.z;
    // Phi and theta are the angles from the x axis in the x-y plane and from
    // the z axis, respectively. (As found in spherical coordinates)
    // These angles are used to rotate the random point in the spheroid about
    // the local origin
    //
    // Rotate about z axis by phi
    //let phi: f32 = if dx.abs() > 0.0 {
    //    (dy / dx).atan()
    //} else {
    //    0.5 * PI
    //};
    // This is unnecessary as rtheta is randomly selected between 0.0 and 2.0 * PI
    // let rot_z_mat = Mat3::new(phi.cos(), -1.0 * phi.sin(), 0.0, phi.sin(),
    // phi.cos(), 0.0, 0.0, 0.0, 1.0);

    // Rotate about perpendicular vector in the xy plane by theta
    let theta: f32 = if radius > 0.0 {
        (dz / radius).acos()
    } else {
        0.0
    };
    // Vector from focus1 to focus2
    let r_vec = focus2 - focus1;
    // Perpendicular vector in xy plane
    let perp_vec = Vec3::new(-1.0 * r_vec.y, r_vec.x, 0.0).normalized();
    let l = perp_vec.x;
    let m = perp_vec.y;
    let n = perp_vec.z;
    // Rotation matrix for rotation about a vector
    let rot_2_mat = Mat3::new(
        l * l * (1.0 - theta.cos()),
        m * l * (1.0 - theta.cos()) - n * theta.sin(),
        n * l * (1.0 - theta.cos()) + m * theta.sin(),
        l * m * (1.0 - theta.cos()) + n * theta.sin(),
        m * m * (1.0 - theta.cos()) + theta.cos(),
        n * m * (1.0 - theta.cos()) - l * theta.sin(),
        l * n * (1.0 - theta.cos()) - m * theta.sin(),
        m * n * (1.0 - theta.cos()) + l * theta.sin(),
        n * n * (1.0 - theta.cos()) + theta.cos(),
    );

    // Get the global coordinates of the point by rotating and adding the origin
    // rot_z_mat is unneeded due to the random rotation defined by lambda
    // let global_coords = midpoint + rot_2_mat * (rot_z_mat * point);
    midpoint + rot_2_mat * point
}