1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
use hashbrown::HashMap;
use rayon::ThreadPool;
use std::{
    collections::VecDeque,
    sync::{Arc, Mutex},
    time::Instant,
};
use tracing::{error, warn};

/// Provides a Wrapper around rayon threadpool to execute slow-jobs.
/// slow means, the job doesn't need to not complete within the same tick.
/// DO NOT USE I/O blocking jobs, but only CPU heavy jobs.
/// Jobs run here, will reduce the ammount of threads rayon can use during the
/// main tick.
///
/// ## Configuration
/// This Pool allows you to configure certain names of jobs and assign them a
/// maximum number of threads # Example
/// Your system has 16 cores, you assign 12 cores for slow-jobs.
/// Then you can configure all jobs with the name `CHUNK_GENERATOR` to spawn on
/// max 50% (6 = cores)
///
/// ## Spawn Order
/// - At least 1 job of a configuration is allowed to run if global limit isn't
///   hit.
/// - remaining capacities are spread in relation to their limit. e.g. a
///   configuration with double the limit will be sheduled to spawn double the
///   tasks, starting by a round robin.
///
/// ## States
/// - queued
/// - spawned
/// - started
/// - finished
/// ```
/// # use veloren_common::slowjob::SlowJobPool;
/// # use std::sync::Arc;
///
/// let threadpool = rayon::ThreadPoolBuilder::new()
///     .num_threads(16)
///     .build()
///     .unwrap();
/// let pool = SlowJobPool::new(3, 10, Arc::new(threadpool));
/// pool.configure("CHUNK_GENERATOR", |n| n / 2);
/// pool.spawn("CHUNK_GENERATOR", move || println!("this is a job"));
/// ```
#[derive(Clone)]
pub struct SlowJobPool {
    internal: Arc<Mutex<InternalSlowJobPool>>,
}

#[derive(Debug)]
pub struct SlowJob {
    name: String,
    id: u64,
}

type JobType = Box<dyn FnOnce() + Send + Sync + 'static>;

struct InternalSlowJobPool {
    next_id: u64,
    queue: HashMap<String, VecDeque<Queue>>,
    configs: HashMap<String, Config>,
    last_spawned_configs: Vec<String>,
    global_spawned_and_running: u64,
    global_limit: u64,
    jobs_metrics_cnt: usize,
    jobs_metrics: HashMap<String, Vec<JobMetrics>>,
    threadpool: Arc<ThreadPool>,
    internal: Option<Arc<Mutex<Self>>>,
}

#[derive(Debug)]
struct Config {
    local_limit: u64,
    local_spawned_and_running: u64,
}

struct Queue {
    id: u64,
    name: String,
    task: JobType,
}

pub struct JobMetrics {
    pub queue_created: Instant,
    pub execution_start: Instant,
    pub execution_end: Instant,
}

impl Queue {
    fn new<F>(name: &str, id: u64, internal: &Arc<Mutex<InternalSlowJobPool>>, f: F) -> Self
    where
        F: FnOnce() + Send + Sync + 'static,
    {
        let internal = Arc::clone(internal);
        let name_cloned = name.to_owned();
        let queue_created = Instant::now();
        Self {
            id,
            name: name.to_owned(),
            task: Box::new(move || {
                common_base::prof_span_alloc!(_guard, &name_cloned);
                let execution_start = Instant::now();
                f();
                let execution_end = Instant::now();
                let metrics = JobMetrics {
                    queue_created,
                    execution_start,
                    execution_end,
                };
                // directly maintain the next task afterwards
                {
                    let mut lock = internal.lock().expect("slowjob lock poisoned");
                    lock.finish(&name_cloned, metrics);
                    lock.spawn_queued();
                }
            }),
        }
    }
}

impl InternalSlowJobPool {
    pub fn new(
        global_limit: u64,
        jobs_metrics_cnt: usize,
        _threadpool: Arc<ThreadPool>,
    ) -> Arc<Mutex<Self>> {
        // rayon is having a bug where a ECS task could work-steal a slowjob if we use
        // the same threadpool, which would cause lagspikes we dont want!
        let threadpool = Arc::new(
            rayon::ThreadPoolBuilder::new()
                .num_threads(global_limit as usize)
                .thread_name(move |i| format!("slowjob-{}", i))
                .build()
                .unwrap(),
        );
        let link = Arc::new(Mutex::new(Self {
            next_id: 0,
            queue: HashMap::new(),
            configs: HashMap::new(),
            last_spawned_configs: Vec::new(),
            global_spawned_and_running: 0,
            global_limit: global_limit.max(1),
            jobs_metrics_cnt,
            jobs_metrics: HashMap::new(),
            threadpool,
            internal: None,
        }));

        let link_clone = Arc::clone(&link);
        link.lock()
            .expect("poisoned on InternalSlowJobPool::new")
            .internal = Some(link_clone);
        link
    }

    /// returns order of configuration which are queued next
    fn calc_queued_order(
        &self,
        mut queued: HashMap<&String, u64>,
        mut limit: usize,
    ) -> Vec<String> {
        let mut roundrobin = self.last_spawned_configs.clone();
        let mut result = vec![];
        let spawned = self
            .configs
            .iter()
            .map(|(n, c)| (n, c.local_spawned_and_running))
            .collect::<HashMap<_, u64>>();
        let mut queried_capped = self
            .configs
            .iter()
            .map(|(n, c)| {
                (
                    n,
                    queued
                        .get(&n)
                        .cloned()
                        .unwrap_or(0)
                        .min(c.local_limit - c.local_spawned_and_running),
                )
            })
            .collect::<HashMap<_, _>>();
        // grab all configs that are queued and not running. in roundrobin order
        for n in roundrobin.clone().into_iter() {
            if let Some(c) = queued.get_mut(&n) {
                if *c > 0 && spawned.get(&n).cloned().unwrap_or(0) == 0 {
                    result.push(n.clone());
                    *c -= 1;
                    limit -= 1;
                    queried_capped.get_mut(&n).map(|v| *v -= 1);
                    roundrobin
                        .iter()
                        .position(|e| e == &n)
                        .map(|i| roundrobin.remove(i));
                    roundrobin.push(n);
                    if limit == 0 {
                        return result;
                    }
                }
            }
        }
        //schedule rest based on their possible limites, don't use round robin here
        let total_limit = queried_capped.values().sum::<u64>() as f32;
        if total_limit < f32::EPSILON {
            return result;
        }
        let mut spawn_rates = queried_capped
            .iter()
            .map(|(&n, l)| (n, ((*l as f32 * limit as f32) / total_limit).min(*l as f32)))
            .collect::<Vec<_>>();
        while limit > 0 {
            spawn_rates.sort_by(|(_, a), (_, b)| {
                if b < a {
                    core::cmp::Ordering::Less
                } else if (b - a).abs() < f32::EPSILON {
                    core::cmp::Ordering::Equal
                } else {
                    core::cmp::Ordering::Greater
                }
            });
            match spawn_rates.first_mut() {
                Some((n, r)) => {
                    if *r > f32::EPSILON {
                        result.push(n.clone());
                        limit -= 1;
                        *r -= 1.0;
                    } else {
                        break;
                    }
                },
                None => break,
            }
        }
        result
    }

    fn can_spawn(&self, name: &str) -> bool {
        let queued = self
            .queue
            .iter()
            .map(|(n, m)| (n, m.len() as u64))
            .collect::<HashMap<_, u64>>();
        let mut to_be_queued = queued.clone();
        let name = name.to_owned();
        *to_be_queued.entry(&name).or_default() += 1;
        let limit = (self.global_limit - self.global_spawned_and_running) as usize;
        // calculate to_be_queued first
        let to_be_queued_order = self.calc_queued_order(to_be_queued, limit);
        let queued_order = self.calc_queued_order(queued, limit);
        // if its queued one time more then its okay to spawn
        let to_be_queued_cnt = to_be_queued_order
            .into_iter()
            .filter(|n| n == &name)
            .count();
        let queued_cnt = queued_order.into_iter().filter(|n| n == &name).count();
        to_be_queued_cnt > queued_cnt
    }

    pub fn spawn<F>(&mut self, name: &str, f: F) -> SlowJob
    where
        F: FnOnce() + Send + Sync + 'static,
    {
        let id = self.next_id;
        self.next_id += 1;
        let queue = Queue::new(name, id, self.internal.as_ref().expect("internal empty"), f);
        self.queue
            .entry(name.to_string())
            .or_default()
            .push_back(queue);
        debug_assert!(
            self.configs.contains_key(name),
            "Can't spawn unconfigured task!"
        );
        //spawn already queued
        self.spawn_queued();
        SlowJob {
            name: name.to_string(),
            id,
        }
    }

    fn finish(&mut self, name: &str, metrics: JobMetrics) {
        let metric = self.jobs_metrics.entry(name.to_string()).or_default();

        if metric.len() < self.jobs_metrics_cnt {
            metric.push(metrics);
        }
        self.global_spawned_and_running -= 1;
        if let Some(c) = self.configs.get_mut(name) {
            c.local_spawned_and_running -= 1;
        } else {
            warn!(?name, "sync_maintain on a no longer existing config");
        }
    }

    fn spawn_queued(&mut self) {
        let queued = self
            .queue
            .iter()
            .map(|(n, m)| (n, m.len() as u64))
            .collect::<HashMap<_, u64>>();
        let limit = self.global_limit as usize;
        let queued_order = self.calc_queued_order(queued, limit);
        for name in queued_order.into_iter() {
            match self.queue.get_mut(&name) {
                Some(deque) => match deque.pop_front() {
                    Some(queue) => {
                        //fire
                        self.global_spawned_and_running += 1;
                        self.configs
                            .get_mut(&queue.name)
                            .expect("cannot fire a unconfigured job")
                            .local_spawned_and_running += 1;
                        self.last_spawned_configs
                            .iter()
                            .position(|e| e == &queue.name)
                            .map(|i| self.last_spawned_configs.remove(i));
                        self.last_spawned_configs.push(queue.name.to_owned());
                        self.threadpool.spawn(queue.task);
                    },
                    None => error!(
                        "internal calculation is wrong, we extected a schedulable job to be \
                         present in the queue"
                    ),
                },
                None => error!(
                    "internal calculation is wrong, we marked a queue as schedulable which \
                     doesn't exist"
                ),
            }
        }
    }

    pub fn take_metrics(&mut self) -> HashMap<String, Vec<JobMetrics>> {
        core::mem::take(&mut self.jobs_metrics)
    }
}

impl SlowJobPool {
    pub fn new(global_limit: u64, jobs_metrics_cnt: usize, threadpool: Arc<ThreadPool>) -> Self {
        Self {
            internal: InternalSlowJobPool::new(global_limit, jobs_metrics_cnt, threadpool),
        }
    }

    /// configure a NAME to spawn up to f(n) threads, depending on how many
    /// threads we globally have available
    pub fn configure<F>(&self, name: &str, f: F)
    where
        F: Fn(u64) -> u64,
    {
        let mut lock = self.internal.lock().expect("lock poisoned while configure");
        let cnf = Config {
            local_limit: f(lock.global_limit).max(1),
            local_spawned_and_running: 0,
        };
        lock.configs.insert(name.to_owned(), cnf);
        lock.last_spawned_configs.push(name.to_owned());
    }

    /// spawn a new slow job on a certain NAME IF it can run immediately
    #[allow(clippy::result_unit_err)]
    pub fn try_run<F>(&self, name: &str, f: F) -> Result<SlowJob, ()>
    where
        F: FnOnce() + Send + Sync + 'static,
    {
        let mut lock = self.internal.lock().expect("lock poisoned while try_run");
        //spawn already queued
        lock.spawn_queued();
        if lock.can_spawn(name) {
            Ok(lock.spawn(name, f))
        } else {
            Err(())
        }
    }

    pub fn spawn<F>(&self, name: &str, f: F) -> SlowJob
    where
        F: FnOnce() + Send + Sync + 'static,
    {
        self.internal
            .lock()
            .expect("lock poisoned while spawn")
            .spawn(name, f)
    }

    pub fn cancel(&self, job: SlowJob) -> Result<(), SlowJob> {
        let mut lock = self.internal.lock().expect("lock poisoned while cancel");
        if let Some(m) = lock.queue.get_mut(&job.name) {
            let p = match m.iter().position(|p| p.id == job.id) {
                Some(p) => p,
                None => return Err(job),
            };
            if m.remove(p).is_some() {
                return Ok(());
            }
        }
        Err(job)
    }

    pub fn take_metrics(&self) -> HashMap<String, Vec<JobMetrics>> {
        self.internal
            .lock()
            .expect("lock poisoned while take_metrics")
            .take_metrics()
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use std::{
        sync::{
            atomic::{AtomicBool, AtomicU64, Ordering},
            Barrier,
        },
        time::Duration,
    };

    fn mock_pool(
        pool_threads: usize,
        global_threads: u64,
        metrics: usize,
        foo: u64,
        bar: u64,
        baz: u64,
    ) -> SlowJobPool {
        let threadpool = rayon::ThreadPoolBuilder::new()
            .num_threads(pool_threads)
            .build()
            .unwrap();
        let pool = SlowJobPool::new(global_threads, metrics, Arc::new(threadpool));
        if foo != 0 {
            pool.configure("FOO", |x| x / foo);
        }
        if bar != 0 {
            pool.configure("BAR", |x| x / bar);
        }
        if baz != 0 {
            pool.configure("BAZ", |x| x / baz);
        }
        pool
    }

    #[test]
    fn simple_queue() {
        let pool = mock_pool(4, 4, 0, 1, 0, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 1u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 4);
        assert_eq!(result.len(), 1);
        assert_eq!(result[0], "FOO");
    }

    #[test]
    fn multiple_queue() {
        let pool = mock_pool(4, 4, 0, 1, 0, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 2u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 4);
        assert_eq!(result.len(), 2);
        assert_eq!(result[0], "FOO");
        assert_eq!(result[1], "FOO");
    }

    #[test]
    fn limit_queue() {
        let pool = mock_pool(5, 5, 0, 1, 0, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 80u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 4);
        assert_eq!(result.len(), 4);
        assert_eq!(result[0], "FOO");
        assert_eq!(result[1], "FOO");
        assert_eq!(result[2], "FOO");
        assert_eq!(result[3], "FOO");
    }

    #[test]
    fn simple_queue_2() {
        let pool = mock_pool(4, 4, 0, 1, 1, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 1u64), ("BAR", 1u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 4);
        assert_eq!(result.len(), 2);
        assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 1);
        assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 1);
    }

    #[test]
    fn multiple_queue_3() {
        let pool = mock_pool(4, 4, 0, 1, 1, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 2u64), ("BAR", 2u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 4);
        assert_eq!(result.len(), 4);
        assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 2);
        assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 2);
    }

    #[test]
    fn multiple_queue_4() {
        let pool = mock_pool(4, 4, 0, 2, 1, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 3u64), ("BAR", 3u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 4);
        assert_eq!(result.len(), 4);
        assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 2);
        assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 2);
    }

    #[test]
    fn multiple_queue_5() {
        let pool = mock_pool(4, 4, 0, 2, 1, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 5u64), ("BAR", 5u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 5);
        assert_eq!(result.len(), 5);
        assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 2);
        assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 3);
    }

    #[test]
    fn multiple_queue_6() {
        let pool = mock_pool(40, 40, 0, 2, 1, 0);
        let internal = pool.internal.lock().unwrap();
        let queue_data = [("FOO", 5u64), ("BAR", 5u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        let result = internal.calc_queued_order(queued, 11);
        assert_eq!(result.len(), 10);
        assert_eq!(result.iter().filter(|&x| x == "FOO").count(), 5);
        assert_eq!(result.iter().filter(|&x| x == "BAR").count(), 5);
    }

    #[test]
    fn roundrobin() {
        let pool = mock_pool(4, 4, 0, 2, 2, 0);
        let queue_data = [("FOO", 5u64), ("BAR", 5u64)]
            .iter()
            .map(|(n, c)| ((*n).to_owned(), *c))
            .collect::<Vec<_>>();
        let queued = queue_data
            .iter()
            .map(|(s, c)| (s, *c))
            .collect::<HashMap<_, _>>();
        // Spawn a FOO task.
        pool.internal
            .lock()
            .unwrap()
            .spawn("FOO", || println!("foo"));
        // a barrier in f doesnt work as we need to wait for the cleanup
        while pool.internal.lock().unwrap().global_spawned_and_running != 0 {
            std::thread::yield_now();
        }
        let result = pool
            .internal
            .lock()
            .unwrap()
            .calc_queued_order(queued.clone(), 1);
        assert_eq!(result.len(), 1);
        assert_eq!(result[0], "BAR");
        // keep order if no new is spawned
        let result = pool
            .internal
            .lock()
            .unwrap()
            .calc_queued_order(queued.clone(), 1);
        assert_eq!(result.len(), 1);
        assert_eq!(result[0], "BAR");
        // spawn a BAR task
        pool.internal
            .lock()
            .unwrap()
            .spawn("BAR", || println!("bar"));
        while pool.internal.lock().unwrap().global_spawned_and_running != 0 {
            std::thread::yield_now();
        }
        let result = pool.internal.lock().unwrap().calc_queued_order(queued, 1);
        assert_eq!(result.len(), 1);
        assert_eq!(result[0], "FOO");
    }

    #[test]
    #[should_panic]
    fn unconfigured() {
        let pool = mock_pool(4, 4, 0, 2, 1, 0);
        let mut internal = pool.internal.lock().unwrap();
        internal.spawn("UNCONFIGURED", || println!());
    }

    #[test]
    fn correct_spawn_doesnt_panic() {
        let pool = mock_pool(4, 4, 0, 2, 1, 0);
        let mut internal = pool.internal.lock().unwrap();
        internal.spawn("FOO", || println!("foo"));
        internal.spawn("BAR", || println!("bar"));
    }

    #[test]
    fn can_spawn() {
        let pool = mock_pool(4, 4, 0, 2, 1, 0);
        let internal = pool.internal.lock().unwrap();
        assert!(internal.can_spawn("FOO"));
        assert!(internal.can_spawn("BAR"));
    }

    #[test]
    fn try_run_works() {
        let pool = mock_pool(4, 4, 0, 2, 1, 0);
        pool.try_run("FOO", || println!("foo")).unwrap();
        pool.try_run("BAR", || println!("bar")).unwrap();
    }

    #[test]
    fn try_run_exhausted() {
        let pool = mock_pool(8, 8, 0, 4, 2, 0);
        let func = || loop {
            std::thread::sleep(Duration::from_secs(1))
        };
        pool.try_run("FOO", func).unwrap();
        pool.try_run("BAR", func).unwrap();
        pool.try_run("FOO", func).unwrap();
        pool.try_run("BAR", func).unwrap();
        pool.try_run("FOO", func).unwrap_err();
        pool.try_run("BAR", func).unwrap();
        pool.try_run("FOO", func).unwrap_err();
        pool.try_run("BAR", func).unwrap();
        pool.try_run("FOO", func).unwrap_err();
        pool.try_run("BAR", func).unwrap_err();
        pool.try_run("FOO", func).unwrap_err();
    }

    #[test]
    fn actually_runs_1() {
        let pool = mock_pool(4, 4, 0, 0, 0, 1);
        let barrier = Arc::new(Barrier::new(2));
        let barrier_clone = Arc::clone(&barrier);
        pool.try_run("BAZ", move || {
            barrier_clone.wait();
        })
        .unwrap();
        barrier.wait();
    }

    #[test]
    fn actually_runs_2() {
        let pool = mock_pool(4, 4, 0, 0, 0, 1);
        let barrier = Arc::new(Barrier::new(2));
        let barrier_clone = Arc::clone(&barrier);
        pool.spawn("BAZ", move || {
            barrier_clone.wait();
        });
        barrier.wait();
    }

    #[test]
    fn actually_waits() {
        let pool = mock_pool(4, 4, 0, 4, 0, 1);
        let ops_i_ran = Arc::new(AtomicBool::new(false));
        let ops_i_ran_clone = Arc::clone(&ops_i_ran);
        let barrier = Arc::new(Barrier::new(2));
        let barrier_clone = Arc::clone(&barrier);
        let barrier2 = Arc::new(Barrier::new(2));
        let barrier2_clone = Arc::clone(&barrier2);
        pool.try_run("FOO", move || {
            barrier_clone.wait();
        })
        .unwrap();
        pool.spawn("FOO", move || {
            ops_i_ran_clone.store(true, Ordering::SeqCst);
            barrier2_clone.wait();
        });
        // in this case we have to sleep
        std::thread::sleep(Duration::from_secs(1));
        assert!(!ops_i_ran.load(Ordering::SeqCst));
        // now finish the first job
        barrier.wait();
        // now wait on the second job to be actually finished
        barrier2.wait();
    }

    #[test]
    fn verify_metrics() {
        let pool = mock_pool(4, 4, 2, 1, 0, 4);
        let barrier = Arc::new(Barrier::new(5));
        for name in &["FOO", "BAZ", "FOO", "FOO"] {
            let barrier_clone = Arc::clone(&barrier);
            pool.spawn(name, move || {
                barrier_clone.wait();
            });
        }
        // now finish all jobs
        barrier.wait();
        // in this case we have to sleep to give it some time to store all the metrics
        std::thread::sleep(Duration::from_secs(2));
        let metrics = pool.take_metrics();
        let foo = metrics.get("FOO").expect("FOO doesn't exist in metrics");
        //its limited to 2, even though we had 3 jobs
        assert_eq!(foo.len(), 2);
        assert!(metrics.get("BAR").is_none());
        let baz = metrics.get("BAZ").expect("BAZ doesn't exist in metrics");
        assert_eq!(baz.len(), 1);
    }

    fn work_barrier(counter: &Arc<AtomicU64>, ms: u64) -> impl std::ops::FnOnce() -> () {
        let counter = Arc::clone(counter);
        println!("Create work_barrier");
        move || {
            println!(".{}..", ms);
            std::thread::sleep(Duration::from_millis(ms));
            println!(".{}..Done", ms);
            counter.fetch_add(1, Ordering::SeqCst);
        }
    }

    #[test]
    fn verify_that_spawn_doesnt_block_par_iter() {
        let threadpool = Arc::new(
            rayon::ThreadPoolBuilder::new()
                .num_threads(20)
                .build()
                .unwrap(),
        );
        let pool = SlowJobPool::new(2, 100, Arc::<rayon::ThreadPool>::clone(&threadpool));
        pool.configure("BAZ", |_| 2);
        let counter = Arc::new(AtomicU64::new(0));
        let start = Instant::now();

        threadpool.install(|| {
            use rayon::prelude::*;
            (0..100)
                .into_par_iter()
                .map(|i| {
                    std::thread::sleep(Duration::from_millis(10));
                    if i == 50 {
                        pool.spawn("BAZ", work_barrier(&counter, 2000));
                    }
                    if i == 99 {
                        println!("The first ITER end, at {}ms", start.elapsed().as_millis());
                    }
                })
                .collect::<Vec<_>>();
            let elapsed = start.elapsed().as_millis();
            println!("The first ITER finished, at {}ms", elapsed);
            assert!(
                elapsed < 1900,
                "It seems like the par_iter waited on the 2s sleep task to finish"
            );
        });

        while counter.load(Ordering::SeqCst) == 0 {
            println!("waiting for BAZ task to finish");
            std::thread::sleep(Duration::from_secs(1));
        }
    }
}