1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
use std::cmp::Ordering;

use crate::{
    comp::inventory::{
        item::ItemDefinitionIdOwned, slot::InvSlotId, trade_pricing::TradePricing, Inventory,
    },
    terrain::BiomeKind,
    uid::Uid,
};
use hashbrown::HashMap;
use serde::{Deserialize, Serialize};
use strum::EnumIter;
use tracing::{trace, warn};

#[derive(Copy, Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum TradePhase {
    Mutate,
    Review,
    Complete,
}

/// Clients submit `TradeAction` to the server, which adds the Uid of the
/// player out-of-band (i.e. without trusting the client to say who it's
/// accepting on behalf of)
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum TradeAction {
    AddItem {
        item: InvSlotId,
        quantity: u32,
        ours: bool,
    },
    RemoveItem {
        item: InvSlotId,
        quantity: u32,
        ours: bool,
    },
    /// Accept needs the phase indicator to avoid progressing too far in the
    /// trade if there's latency and a player presses the accept button
    /// multiple times
    Accept(TradePhase),
    Decline,
}

#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub enum TradeResult {
    Completed,
    Declined,
    NotEnoughSpace,
}

/// Items are not removed from the inventory during a PendingTrade: all the
/// items are moved atomically (if there's space and both parties agree) upon
/// completion
///
/// Since this stores `InvSlotId`s (i.e. references into inventories) instead of
/// items themselves, there aren't any duplication/loss risks from things like
/// dropped connections or declines, since the server doesn't have to move items
/// from a trade back into a player's inventory.
///
/// On the flip side, since they are references to *slots*, if a player could
/// swap items in their inventory during a trade, they could mutate the trade,
/// enabling them to remove an item from the trade even after receiving the
/// counterparty's phase2 accept. To prevent this, we disallow all
/// forms of inventory manipulation in `server::events::inventory_manip` if
/// there's a pending trade that's past phase1 (in phase1, the trade should be
/// mutable anyway).
///
/// Inventory manipulation in phase1 may be beneficial to trade (e.g. splitting
/// a stack of items, once that's implemented), but should reset both phase1
/// accept flags to make the changes more visible.
///
/// Another edge case prevented by using `InvSlotId`s is that it disallows
/// trading currently-equipped items (since `EquipSlot`s are disjoint from
/// `InvSlotId`s), which avoids the issues associated with trading equipped bags
/// that may still have contents.
#[derive(Clone, Debug, PartialEq, Eq, Serialize, Deserialize)]
pub struct PendingTrade {
    /// `parties[0]` is the entity that initiated the trade, parties[1] is the
    /// other entity that's being traded with
    pub parties: [Uid; 2],
    /// `offers[i]` represents the items and quantities of the party i's items
    /// being offered
    pub offers: [HashMap<InvSlotId, u32>; 2],
    /// The current phase of the trade
    pub phase: TradePhase,
    /// `accept_flags` indicate that which parties wish to proceed to the next
    /// phase of the trade
    pub accept_flags: [bool; 2],
}

impl TradePhase {
    fn next(self) -> TradePhase {
        match self {
            TradePhase::Mutate => TradePhase::Review,
            TradePhase::Review => TradePhase::Complete,
            TradePhase::Complete => TradePhase::Complete,
        }
    }
}

impl TradeAction {
    pub fn item(item: InvSlotId, delta: i32, ours: bool) -> Option<Self> {
        match delta.cmp(&0) {
            Ordering::Equal => None,
            Ordering::Less => Some(TradeAction::RemoveItem {
                item,
                ours,
                quantity: -delta as u32,
            }),
            Ordering::Greater => Some(TradeAction::AddItem {
                item,
                ours,
                quantity: delta as u32,
            }),
        }
    }
}

impl PendingTrade {
    pub fn new(party: Uid, counterparty: Uid) -> PendingTrade {
        PendingTrade {
            parties: [party, counterparty],
            offers: [HashMap::new(), HashMap::new()],
            phase: TradePhase::Mutate,
            accept_flags: [false, false],
        }
    }

    pub fn phase(&self) -> TradePhase { self.phase }

    pub fn should_commit(&self) -> bool { matches!(self.phase, TradePhase::Complete) }

    pub fn which_party(&self, party: Uid) -> Option<usize> {
        self.parties
            .iter()
            .enumerate()
            .find(|(_, x)| **x == party)
            .map(|(i, _)| i)
    }

    pub fn is_empty_trade(&self) -> bool { self.offers[0].is_empty() && self.offers[1].is_empty() }

    /// Invariants:
    /// - A party is never shown as offering more of an item than they own
    /// - Offers with a quantity of zero get removed from the trade
    /// - Modifications can only happen in phase 1
    /// - Whenever a trade is modified, both accept flags get reset
    /// - Accept flags only get set for the current phase
    pub fn process_trade_action(
        &mut self,
        mut who: usize,
        action: TradeAction,
        inventories: &[&Inventory],
    ) {
        use TradeAction::*;
        match action {
            AddItem {
                item,
                quantity: delta,
                ours,
            } => {
                if self.phase() == TradePhase::Mutate && delta > 0 {
                    if !ours {
                        who = 1 - who;
                    }
                    let total = self.offers[who].entry(item).or_insert(0);
                    let owned_quantity =
                        inventories[who].get(item).map(|i| i.amount()).unwrap_or(0);
                    *total = total.saturating_add(delta).min(owned_quantity);
                    self.accept_flags = [false, false];
                }
            },
            RemoveItem {
                item,
                quantity: delta,
                ours,
            } => {
                if self.phase() == TradePhase::Mutate {
                    if !ours {
                        who = 1 - who;
                    }
                    self.offers[who]
                        .entry(item)
                        .and_replace_entry_with(|_, mut total| {
                            total = total.saturating_sub(delta);
                            if total > 0 { Some(total) } else { None }
                        });
                    self.accept_flags = [false, false];
                }
            },
            Accept(phase) => {
                if self.phase == phase && !self.is_empty_trade() {
                    self.accept_flags[who] = true;
                }
                if self.accept_flags[0] && self.accept_flags[1] {
                    self.phase = self.phase.next();
                    self.accept_flags = [false, false];
                }
            },
            Decline => {},
        }
    }
}

#[derive(Clone, Copy, Debug, Serialize, Deserialize, PartialEq, Eq, Hash)]
pub struct TradeId(usize);

pub struct Trades {
    pub next_id: TradeId,
    pub trades: HashMap<TradeId, PendingTrade>,
    pub entity_trades: HashMap<Uid, TradeId>,
}

impl Trades {
    pub fn begin_trade(&mut self, party: Uid, counterparty: Uid) -> TradeId {
        let id = self.next_id;
        self.next_id = TradeId(id.0.wrapping_add(1));
        self.trades
            .insert(id, PendingTrade::new(party, counterparty));
        self.entity_trades.insert(party, id);
        self.entity_trades.insert(counterparty, id);
        id
    }

    pub fn process_trade_action<'a, F: Fn(Uid) -> Option<&'a Inventory>>(
        &mut self,
        id: TradeId,
        who: Uid,
        action: TradeAction,
        get_inventory: F,
    ) {
        trace!("for trade id {:?}, message {:?}", id, action);
        if let Some(trade) = self.trades.get_mut(&id) {
            if let Some(party) = trade.which_party(who) {
                let mut inventories = Vec::new();
                for party in trade.parties.iter() {
                    match get_inventory(*party) {
                        Some(inventory) => inventories.push(inventory),
                        None => return,
                    }
                }
                trade.process_trade_action(party, action, &inventories);
            } else {
                warn!(
                    "An entity who is not a party to trade {:?} tried to modify it",
                    id
                );
            }
        } else {
            warn!("Attempt to modify nonexistent trade id {:?}", id);
        }
    }

    pub fn decline_trade(&mut self, id: TradeId, who: Uid) -> Option<Uid> {
        let mut to_notify = None;
        if let Some(trade) = self.trades.remove(&id) {
            match trade.which_party(who) {
                Some(i) => {
                    self.entity_trades.remove(&trade.parties[0]);
                    self.entity_trades.remove(&trade.parties[1]);
                    // let the other person know the trade was declined
                    to_notify = Some(trade.parties[1 - i])
                },
                None => {
                    warn!(
                        "An entity who is not a party to trade {:?} tried to decline it",
                        id
                    );
                    // put it back
                    self.trades.insert(id, trade);
                },
            }
        } else {
            warn!("Attempt to decline nonexistent trade id {:?}", id);
        }
        to_notify
    }

    /// See the doc comment on `common::trade::PendingTrade` for the
    /// significance of these checks
    pub fn in_trade_with_property<F: FnOnce(&PendingTrade) -> bool>(
        &self,
        uid: &Uid,
        f: F,
    ) -> bool {
        self.entity_trades
            .get(uid)
            .and_then(|trade_id| self.trades.get(trade_id))
            .map(f)
            // if any of the option lookups failed, we're not in any trade
            .unwrap_or(false)
    }

    pub fn in_immutable_trade(&self, uid: &Uid) -> bool {
        self.in_trade_with_property(uid, |trade| trade.phase() != TradePhase::Mutate)
    }

    pub fn in_mutable_trade(&self, uid: &Uid) -> bool {
        self.in_trade_with_property(uid, |trade| trade.phase() == TradePhase::Mutate)
    }

    pub fn implicit_mutation_occurred(&mut self, uid: &Uid) {
        if let Some(trade_id) = self.entity_trades.get(uid) {
            self.trades
                .get_mut(trade_id)
                .map(|trade| trade.accept_flags = [false, false]);
        }
    }
}

impl Default for Trades {
    fn default() -> Trades {
        Trades {
            next_id: TradeId(0),
            trades: HashMap::new(),
            entity_trades: HashMap::new(),
        }
    }
}

// we need this declaration in common for Merchant loadout creation, it is not
// directly related to trade between entities, but between sites (more abstract)
// economical information
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq, Serialize, Deserialize, EnumIter)]
pub enum Good {
    Territory(BiomeKind),
    Flour,
    Meat,
    Terrain(BiomeKind),
    Transportation,
    Food,
    Wood,
    Stone,
    Tools, // weapons, farming tools
    Armor,
    Ingredients, // raw material for Armor+Tools+Potions
    Potions,
    Coin, // exchange material across sites
    RoadSecurity,
    Recipe,
}

impl Default for Good {
    fn default() -> Self {
        Good::Terrain(BiomeKind::Void) // Arbitrary
    }
}

impl Good {
    /// The discounting factor applied when selling goods back to a merchant
    pub fn trade_margin(&self) -> f32 {
        match self {
            Good::Tools | Good::Armor => 0.5,
            Good::Food | Good::Potions | Good::Ingredients | Good::Wood => 0.75,
            Good::Coin | Good::Recipe => 1.0,
            // Certain abstract goods (like Territory) shouldn't be attached to concrete items;
            // give a sale price of 0 if the player is trying to sell a concrete item that somehow
            // has one of these categories
            _ => 0.0,
        }
    }
}

// ideally this would be a real Id<Site> but that is from the world crate
pub type SiteId = u64;

#[derive(Clone, Debug)]
pub struct SiteInformation {
    pub id: SiteId,
    pub unconsumed_stock: HashMap<Good, f32>,
}

#[derive(Clone, Debug, Default, Serialize, Deserialize)]
pub struct SitePrices {
    pub values: HashMap<Good, f32>,
}

impl SitePrices {
    pub fn balance(
        &self,
        offers: &[HashMap<InvSlotId, u32>; 2],
        inventories: &[Option<ReducedInventory>; 2],
        who: usize,
        reduce: bool,
    ) -> Option<f32> {
        offers[who]
            .iter()
            .map(|(slot, amount)| {
                inventories[who]
                    .as_ref()
                    .map(|ri| {
                        let item = ri.inventory.get(slot)?;
                        let vec = TradePricing::get_materials(&item.name.as_ref())?;
                        Some(
                            vec.iter()
                                .map(|(amount2, material)| {
                                    self.values.get(material).copied().unwrap_or_default()
                                        * *amount2
                                        * (if reduce { material.trade_margin() } else { 1.0 })
                                })
                                .sum::<f32>()
                                * (*amount as f32),
                        )
                    })
                    .unwrap_or(Some(0.0))
            })
            .try_fold(0.0, |a, p| Some(a + p?))
    }
}

#[derive(Clone, Debug)]
pub struct ReducedInventoryItem {
    pub name: ItemDefinitionIdOwned,
    pub amount: u32,
}

#[derive(Clone, Debug, Default)]
pub struct ReducedInventory {
    pub inventory: HashMap<InvSlotId, ReducedInventoryItem>,
}

impl ReducedInventory {
    pub fn from(inventory: &Inventory) -> Self {
        let items = inventory
            .slots_with_id()
            .filter(|(_, it)| it.is_some())
            .map(|(sl, it)| {
                (sl, ReducedInventoryItem {
                    name: it.as_ref().unwrap().item_definition_id().to_owned(),
                    amount: it.as_ref().unwrap().amount(),
                })
            })
            .collect();
        Self { inventory: items }
    }
}