1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
use core::marker::PhantomData;
use serde::{Deserialize, Serialize};
pub trait SubContext<Context> {
fn sub_context(self) -> Context;
}
impl<Context> SubContext<Context> for Context {
fn sub_context(self) -> Context { self }
}
impl<Head, Tail> SubContext<Tail> for (Head, Tail) {
fn sub_context(self) -> Tail { self.1 }
}
pub trait Typed<Context, Type, S> {
fn reduce(self, context: Context) -> (Type, S);
}
/// Given a head expression (Self) and a target type (Type),
/// attempt to synthesize a term that reduces head into the target type.
///
/// How we do this depends on the type of the head expression:
///
/// - For enums, we synthesize a match on the current head. For each match arm,
/// we then repeat this process on the constructor arguments; if there are no
/// constructor arguments, we synthesize a literal (Pure term). (TODO: Handle
/// larger than 1 tuple properly--for now we just synthesize a Pure term for
/// these cases).
///
/// - For structs, we synthesize a projection on the current head. For each
/// projection, we then repeat this process on the type of the projected
/// field.
///
/// - For other types (which currently have to opt out during the field
/// declaration), we synthesize a literal.
///
/// TODO: Differentiate between the context and the stack at some point; for
/// now, we only use the context as a stack.
pub trait SynthTyped<Context, Target> {
type Expr;
}
/// Weak head reduction type (equivalent to applying a reduction to the head
/// variable, but this way we don't have to implement variable lookup and it
/// doesn't serialize with variables).
#[fundamental]
#[derive(Deserialize, Serialize)]
#[serde(transparent)]
pub struct WeakHead<Reduction, Type> {
pub red: Reduction,
#[serde(skip)]
pub ty: PhantomData<Type>,
}
#[derive(Deserialize, Serialize)]
#[serde(transparent)]
pub struct Pure<T>(pub T);
impl<'a, Context: SubContext<S>, T, S> Typed<Context, &'a T, S> for &'a Pure<T> {
fn reduce(self, context: Context) -> (&'a T, S) { (&self.0, context.sub_context()) }
}
impl<Context, Target> SynthTyped<Context, Target> for WeakHead<Pure<Target>, Target> {
type Expr = Pure<Target>;
}
/// A lazy pattern match reified as a Rust type.
///
/// `expr` is the expression being matched on, generally of some enum type `Ty`.
///
/// `case` represents the pattern match--it will generally be a structure with
/// one field per constructor in `Ty`. The field should contain enough
/// information to run the match arm for that constructor, given the information
/// contained in the constructor arguments.
///
/// `ty` represents the return type of the match expression. It does not carry
/// any runtime-relevant information, but is needed in order to simplify our
/// trait definitions.
///
/// The intent is that you should not construct this structure directly, nor
/// should you define or construct the `Cases` structure directly. Instead, to
/// use this you are expected to wrap your enum declaration in a call to
/// [make_case_elim!], as follows:
///
/// ```
/// veloren_common::make_case_elim!(
/// my_type_module,
/// #[repr(u32)]
/// #[derive(Clone,Copy)]
/// pub enum MyType {
/// Constr1 = 0,
/// #[typed(pure)] Constr2(arg : u8) = 1,
/// /* ..., */
/// }
/// );
///
/// # fn main() {
/// # println!("some_dummy_main");
/// # }
/// ```
///
/// This macro automatically does a few things. First, it creates the `enum`
/// type `MyType` in the current scope, as expected. Second, it creates a
/// module named `my_type_module` in the current scope, into which it dumps a
/// few things. In this case:
///
/// ```
/// #[repr(u32)]
/// #[derive(Clone, Copy)]
/// pub enum MyType {
/// Constr1 = 0,
/// Constr2(u8) = 1,
/// /* ..., */
/// }
///
/// # #[allow(non_snake_case)]
/// # #[allow(dead_code)]
/// mod my_type_module {
/// use serde::{Deserialize, Serialize};
///
/// /// The number of variants in this enum.
/// pub const NUM_VARIANTS: usize = 2;
///
/// /// An array of all the variant indices (in theory, this can be used by this or other
/// /// macros in order to easily build up things like uniform random samplers).
/// pub const ALL_INDICES: [u32; NUM_VARIANTS] = [0, 1];
///
/// /// A convenience trait used to store a different type for each constructor in this
/// /// pattern.
/// pub trait PackedElim {
/// type Constr1;
/// type Constr2;
/// }
///
/// /// The actual *cases.* If you think of pattern match arms as being closures that accept
/// /// the constructor types as arguments, you can think of this structure as somehow
/// /// representing just the data *owned* by the closure. This is also what you will
/// /// generally store in your ron file--it has a field for each constructor of your enum,
/// /// with the types of all the fields specified by the implementation of [PackedElim] for
/// /// the [Elim] argument. Each field has the same name as the constructor it represents.
/// #[derive(Serialize, Deserialize)]
/// pub struct Cases<Elim: PackedElim> {
/// pub Constr1: Elim::Constr1,
/// pub Constr2: Elim::Constr2,
/// }
///
/// /// Finally, because it represents by an overwhelming margin the most common usecase, we
/// /// predefine a particular pattern matching strategy--"pure"--where every arm holds data of
/// /// the exact same type, T.
/// impl<T> PackedElim for veloren_common::typed::Pure<T> {
/// type Constr1 = T;
/// type Constr2 = T;
/// }
///
/// /// Because PureCases is so convenient, we have an alias for it. Thus, in order to
/// /// represent a pattern match on an argument that returns a constant of type (u8,u8,u8) for
/// /// each arm, you'd use the type `PureCases<(u8, u8, u8)>`.
/// pub type PureCases<Elim> = Cases<veloren_common::typed::Pure<Elim>>;
/// }
/// ```
///
/// Finally, a useful implementation of the [Typed] trait completes this story,
/// providing a way to evaluate this lazy math statement within Rust.
/// Unfortunately, [Typed] is quite complicated, and this story is still being
/// fully evaluated, so showing teh type may not be that elucidating.
/// Instead, we'll just present the method you can use most easily to pattern
/// match using the PureCases pattern we mentioned earlier:
///
/// pub fn elim_case_pure<'a, Type>(&'a self, cases: &'a $mod::PureCases<Type>)
/// -> &'a Type
///
/// If self is expression of your defined enum type, and match data defined by
/// PureCases, this evaluates the pattern match on self and returns the matched
/// case.
///
/// To see how this is used in more detail, check out
/// `common/src/body/humanoid.rs`; it is also used extensively in the world
/// repository.
///
/// ---
///
/// Limitations:
///
/// Unfortunately, due to restrictions on macro_rules, we currently always
/// require the types defined to #[repr(inttype)] as you can see above. There
/// are also some other current limitations that we hopefully will be able to
/// lift at some point; struct variants are not yet supported, and neither
/// attributes on fields.
#[fundamental]
#[derive(Deserialize, Serialize)]
#[serde(transparent)]
pub struct ElimCase<Cases> {
pub cases: Cases,
}
#[fundamental]
#[derive(Deserialize, Serialize)]
#[serde(transparent)]
pub struct ElimProj<Proj> {
pub proj: Proj,
}
pub type ElimWeak<Type, Elim> = <WeakHead<Type, Elim> as SynthTyped<((Type,), ()), Elim>>::Expr;
#[macro_export]
macro_rules! as_item {
($i:item) => {
$i
};
}
#[macro_export]
/// This macro is used internally by typed.
///
/// We use this in order to reliably construct a "representative" type for the
/// weak head reduction type. We need this because for some types of arguments
/// (empty variants for an enum, fields or constructor arguments explicitly
/// marked as #[typed(pure)], etc.) won't directly implement the WeakHead trait;
/// in such cases, we just synthesize a literal of the appropriate type.
macro_rules! make_weak_head_type {
($Target:ty, $( #[$attr:meta] )* , ) => {
$crate::typed::Pure<$Target>
};
($Target:ty, #[ typed(pure) ] , $( $extra:tt )*) => {
$crate::typed::Pure<$Target>
};
($Target:ty, , $Type:ty, $( $extra:tt )*) => {
$crate::typed::Pure<$Target>
};
($Target:ty, , $Type:ty) => {
$Type
}
}
#[macro_export]
macro_rules! make_case_elim {
($mod:ident, $( #[ $ty_attr:meta ] )* $vis:vis enum $ty:ident {
$( $( #[$( $constr_attr:tt )*] )* $constr:ident $( ( $( $arg_name:ident : $arg_ty:ty ),* ) )? = $index:expr ),* $(,)?
}) => {
$crate::as_item! {
$( #[$ty_attr] )*
$vis enum $ty {
$( $constr $( ($( $arg_ty, )*) )? = $index, )*
}
}
#[allow(non_snake_case)]
#[allow(dead_code)]
$vis mod $mod {
use ::serde::{Deserialize, Serialize};
pub const NUM_VARIANTS: usize = 0 $( + { let _ = $index; 1 } )*;
pub const ALL_INDICES: [u32; NUM_VARIANTS] = [ $( $index, )* ];
pub trait PackedElim {
$( type $constr; )*
}
#[derive(Serialize, Deserialize)]
pub struct Cases<Elim: PackedElim> {
$( pub $constr : Elim::$constr, )*
}
pub type PureCases<Elim> = $crate::typed::ElimCase<Cases<$crate::typed::Pure<Elim>>>;
}
impl<T> $mod::PackedElim for $crate::typed::Pure<T> {
$( type $constr = $crate::typed::Pure<T>; )*
}
#[allow(unused_parens)]
impl<Target> $mod::PackedElim for $crate::typed::WeakHead<$ty, Target>
where $(
$crate::typed::WeakHead<$crate::make_weak_head_type!(Target, $( #[$( $constr_attr )*] )* , $( $( $arg_ty ),* )?), Target> :
$crate::typed::SynthTyped<($( ($( $arg_ty, )*), )? ()), Target>,
)*
{
$( type $constr =
<$crate::typed::WeakHead<$crate::make_weak_head_type!(Target, $( #[$( $constr_attr )*] )* , $( $( $arg_ty ),* )?), Target>
as $crate::typed::SynthTyped<($( ($( $arg_ty, )*), )? ()), Target>>::Expr;
)*
}
#[allow(unused_parens)]
impl<Context, Target> $crate::typed::SynthTyped<(($ty,), Context), Target> for $crate::typed::WeakHead<$ty, Target>
where $(
$crate::typed::WeakHead<$crate::make_weak_head_type!(Target, $( #[$( $constr_attr )*] )* , $( $( $arg_ty ),* )?), Target> :
$crate::typed::SynthTyped<($( ($( $arg_ty, )*), )? ()), Target>,
)*
{
type Expr = $crate::typed::ElimCase<$mod::Cases<$crate::typed::WeakHead<$ty, Target>>>;
}
#[allow(unused_parens)]
impl<'a, 'b, Elim: $mod::PackedElim, Context, Type, S>
$crate::typed::Typed<((&'a $ty,), Context), Type, S> for &'b $crate::typed::ElimCase<$mod::Cases<Elim>>
where
$( &'b Elim::$constr: $crate::typed::Typed<($( ($( &'a $arg_ty, )*), )? Context), Type, S> ),*
{
fn reduce(self, ((head,), context): ((&'a $ty,), Context)) -> (Type, S)
{
match head {
$( $ty::$constr $( ($( $arg_name, )*) )? =>
<_ as $crate::typed::Typed<_, Type, _>>::reduce(
&self.cases.$constr,
($( ($( $arg_name, )*), )? context),
),
)*
}
}
}
impl $ty {
pub fn elim<'a, Elim, Context, S, Type>(&'a self, elim: Elim, context: Context) -> (Type, S)
where
Elim : $crate::typed::Typed<((&'a $ty,), Context), Type, S>,
{
elim.reduce(((self,), context))
}
pub fn elim_case_pure<'a, Type>(&self, cases: &'a $mod::PureCases<Type>) -> &'a Type
{
let (expr, ()) = self.elim(cases, ());
expr
}
#[allow(unused_parens)]
pub fn elim_case_weak<'a, 'b, Type>(&'a self, cases: &'b $crate::typed::ElimWeak<Self, Type>) -> &'b Type
where $(
$crate::typed::WeakHead<$crate::make_weak_head_type!(Type, $( #[$( $constr_attr )*] )* , $( $( $arg_ty ),* )?), Type> :
$crate::typed::SynthTyped<($( ($( $arg_ty, )*), )? ()), Type>,
)*
&'b $crate::typed::ElimWeak<Self, Type> : $crate::typed::Typed<((&'a $ty,), ()), &'b Type, ()>,
{
let (expr, ()) = self.elim(cases, ());
expr
}
}
}
}
#[macro_export]
macro_rules! make_proj_elim {
($mod:ident, $( #[ $ty_attr:meta ] )* $vis:vis struct $ty:ident {
$( $( #[$( $constr_attr:tt )*] )* $field_vis:vis $constr:ident : $arg_ty:ty ),* $(,)?
}) => {
$crate::as_item! {
$( #[$ty_attr] )*
$vis struct $ty {
$( $field_vis $constr : $arg_ty, )*
}
}
#[allow(non_camel_case_types)]
#[allow(dead_code)]
$vis mod $mod {
use ::serde::{Deserialize, Serialize};
pub trait PackedElim {
$( type $constr; )*
}
#[derive(Serialize, Deserialize)]
pub enum Proj<Elim: PackedElim> {
$( $constr(Elim::$constr), )*
}
pub type PureProj<Elim> = $crate::typed::ElimProj<Proj<$crate::typed::Pure<Elim>>>;
}
impl<T> $mod::PackedElim for $crate::typed::Pure<T> {
$( type $constr = $crate::typed::Pure<T>; )*
}
#[allow(unused_parens)]
impl<Target> $mod::PackedElim for $crate::typed::WeakHead<$ty, Target>
where $(
$crate::typed::WeakHead<$crate::make_weak_head_type!(Target, $( #[$( $constr_attr )*] )* , $arg_ty), Target> :
$crate::typed::SynthTyped<(($arg_ty,), ()), Target>,
)*
{
$( type $constr =
<$crate::typed::WeakHead<$crate::make_weak_head_type!(Target, $( #[$( $constr_attr )*] )* , $arg_ty), Target>
as $crate::typed::SynthTyped<(($arg_ty,), ()), Target>>::Expr;
)*
}
#[allow(unused_parens)]
impl<Context, Target> $crate::typed::SynthTyped<(($ty,), Context), Target> for $crate::typed::WeakHead<$ty, Target>
where $(
$crate::typed::WeakHead<$crate::make_weak_head_type!(Target, $( #[$( $constr_attr )*] )* , $arg_ty), Target> :
$crate::typed::SynthTyped<(($arg_ty,), ()), Target>,
)*
{
type Expr = $crate::typed::ElimProj<$mod::Proj<$crate::typed::WeakHead<$ty, Target>>>;
}
#[allow(unused_parens)]
impl<'a, 'b, Elim: $mod::PackedElim, Context, Type, S>
$crate::typed::Typed<((&'a $ty,), Context), Type, S> for &'b $crate::typed::ElimProj<$mod::Proj<Elim>>
where
$( &'b Elim::$constr: $crate::typed::Typed<((&'a $arg_ty,), Context), Type, S> ),*
{
fn reduce(self, ((head,), context): ((&'a $ty,), Context)) -> (Type, S)
{
match self.proj {
$( $mod::Proj::$constr(ref projection) =>
<_ as $crate::typed::Typed<_, Type, _>>::reduce(
projection,
((&head.$constr,), context),
),
)*
}
}
}
impl $ty {
pub fn elim<'a, Elim, Context, S, Type>(&'a self, elim: Elim, context: Context) -> (Type, S)
where
Elim : $crate::typed::Typed<((&'a $ty,), Context), Type, S>,
{
elim.reduce(((self,), context))
}
pub fn elim_proj_pure<'a, Type>(&self, cases: &'a $mod::PureProj<Type>) -> &'a Type
{
let (expr, ()) = self.elim(cases, ());
expr
}
#[allow(unused_parens)]
pub fn elim_proj_weak<'a, 'b, Type>(&'a self, cases: &'b $crate::typed::ElimWeak<Self, Type>) -> &'b Type
where $(
$crate::typed::WeakHead<$crate::make_weak_head_type!(Type, $( #[$( $constr_attr )*] )* , $arg_ty), Type> :
$crate::typed::SynthTyped<(($arg_ty,), ()), Type>,
)*
&'b $crate::typed::ElimWeak<Self, Type> : $crate::typed::Typed<((&'a $ty,), ()), &'b Type, ()>,
{
let (expr, ()) = self.elim(cases, ());
expr
}
}
}
}