use common::{
terrain::{chonk::Chonk, Block, BlockKind},
vol::{BaseVol, ReadVol, RectVolSize, WriteVol},
volumes::vol_grid_2d::VolGrid2d,
};
use hashbrown::HashMap;
use image::{ImageBuffer, ImageDecoder, ImageEncoder, Pixel};
use num_traits::cast::FromPrimitive;
use serde::{Deserialize, Serialize};
use std::{
fmt::Debug,
io::{Cursor, Read, Write},
marker::PhantomData,
};
use tracing::warn;
use vek::*;
#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct CompressedData<T> {
pub data: Vec<u8>,
compressed: bool,
_phantom: PhantomData<T>,
}
impl<T: Serialize> CompressedData<T> {
pub fn compress(t: &T, level: u32) -> Self {
use flate2::{write::DeflateEncoder, Compression};
let uncompressed = bincode::serialize(t)
.expect("bincode serialization can only fail if a byte limit is set");
if uncompressed.len() >= 32 {
const EXPECT_MSG: &str =
"compression only fails for fallible Read/Write impls (which Vec<u8> is not)";
let buf = Vec::with_capacity(uncompressed.len() / 10);
let mut encoder = DeflateEncoder::new(buf, Compression::new(level));
encoder.write_all(&uncompressed).expect(EXPECT_MSG);
let compressed = encoder.finish().expect(EXPECT_MSG);
CompressedData {
data: compressed,
compressed: true,
_phantom: PhantomData,
}
} else {
CompressedData {
data: uncompressed,
compressed: false,
_phantom: PhantomData,
}
}
}
}
impl<T: for<'a> Deserialize<'a>> CompressedData<T> {
pub fn decompress(&self) -> Option<T> {
if self.compressed {
let mut uncompressed = Vec::with_capacity(self.data.len());
flate2::read::DeflateDecoder::new(&*self.data)
.read_to_end(&mut uncompressed)
.ok()?;
bincode::deserialize(&uncompressed).ok()
} else {
bincode::deserialize(&self.data).ok()
}
}
}
pub trait PackingFormula: Copy {
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32);
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32);
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct WidePacking<const FLIP_X: bool>();
impl<const FLIP_X: bool> PackingFormula for WidePacking<FLIP_X> {
#[inline(always)]
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) { (dims.x * dims.z, dims.y) }
#[inline(always)]
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let i0 = if FLIP_X {
if z % 2 == 0 { x } else { dims.x - x - 1 }
} else {
x
};
let i = z * dims.x + i0;
let j = y;
(i, j)
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct GridLtrPacking;
impl PackingFormula for GridLtrPacking {
#[inline(always)]
fn dimensions(&self, dims: Vec3<u32>) -> (u32, u32) {
let rootz = (dims.z as f64).sqrt().ceil() as u32;
(dims.x * rootz, dims.y * rootz)
}
#[inline(always)]
fn index(&self, dims: Vec3<u32>, x: u32, y: u32, z: u32) -> (u32, u32) {
let rootz = (dims.z as f64).sqrt().ceil() as u32;
let i = x + (z % rootz) * dims.x;
let j = y + (z / rootz) * dims.y;
(i, j)
}
}
pub trait VoxelImageEncoding {
type Workspace;
type Output;
fn create(width: u32, height: u32) -> Self::Workspace;
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>);
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite_data: [u8; 3],
);
fn finish(ws: &Self::Workspace) -> Option<Self::Output>;
}
pub trait VoxelImageDecoding: VoxelImageEncoding {
fn start(ws: &Self::Output) -> Option<Self::Workspace>;
fn get_block(ws: &Self::Workspace, x: u32, y: u32, is_border: bool) -> Block;
}
pub fn image_from_bytes<I: ImageDecoder, P: 'static + Pixel<Subpixel = u8>>(
decoder: I,
) -> Option<ImageBuffer<P, Vec<u8>>> {
let (w, h) = decoder.dimensions();
let mut buf = vec![0; decoder.total_bytes() as usize];
decoder.read_image(&mut buf).ok()?;
ImageBuffer::from_raw(w, h, buf)
}
impl<'a, VIE: VoxelImageEncoding> VoxelImageEncoding for &'a VIE {
type Output = VIE::Output;
type Workspace = VIE::Workspace;
fn create(width: u32, height: u32) -> Self::Workspace { VIE::create(width, height) }
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
(*self).put_solid(ws, x, y, kind, rgb)
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite_data: [u8; 3],
) {
(*self).put_sprite(ws, x, y, kind, sprite_data)
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> { VIE::finish(ws) }
}
impl<'a, VIE: VoxelImageDecoding> VoxelImageDecoding for &'a VIE {
fn start(ws: &Self::Output) -> Option<Self::Workspace> { VIE::start(ws) }
fn get_block(ws: &Self::Workspace, x: u32, y: u32, is_border: bool) -> Block {
VIE::get_block(ws, x, y, is_border)
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct QuadPngEncoding<const RESOLUTION_DIVIDER: u32>();
impl<const N: u32> VoxelImageEncoding for QuadPngEncoding<N> {
type Output = CompressedData<(Vec<u8>, [usize; 3], Vec<[u8; 3]>)>;
type Workspace = (
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Rgb<u8>, Vec<u8>>,
Vec<[u8; 3]>,
HashMap<[u8; 3], u16>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width / N, height / N),
Vec::new(),
HashMap::new(),
)
}
#[inline(always)]
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.3.put_pixel(x / N, y / N, image::Rgb([rgb.r, rgb.g, rgb.b]));
}
#[inline(always)]
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite_data: [u8; 3],
) {
let index = ws.5.entry(sprite_data).or_insert_with(|| {
let index =
ws.4.len()
.try_into()
.expect("Cannot have more than 2^16 unique sprites in one chunk");
ws.4.push(sprite_data);
index
});
let index = index.to_be_bytes();
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([index[0]]));
ws.2.put_pixel(x, y, image::Luma([index[1]]));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 3];
let mut f = |x: &ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.write_image(
x.as_raw(),
x.width(),
x.height(),
image::ExtendedColorType::L8,
)
.ok()?;
indices[i] = buf.len();
Some(())
};
f(&ws.0, 0)?;
f(&ws.1, 1)?;
f(&ws.2, 2)?;
{
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Sub,
);
png.write_image(
ws.3.as_raw(),
ws.3.width(),
ws.3.height(),
image::ExtendedColorType::Rgb8,
)
.ok()?;
}
Some(CompressedData::compress(&(buf, indices, ws.4.clone()), 4))
}
}
const fn sin(x: f64) -> f64 {
use std::f64::consts::PI;
let mut x = (x - PI * 0.5) % (PI * 2.0);
x = if x < 0.0 { -x } else { x } - PI;
x = if x < 0.0 { -x } else { x } - PI * 0.5;
let x2 = x * x;
let x3 = x * x2 / 6.0;
let x5 = x3 * x2 / 20.0;
let x7 = x5 * x2 / 42.0;
let x9 = x7 * x2 / 72.0;
let x11 = x9 * x2 / 110.0;
x - x3 + x5 - x7 + x9 - x11
}
const fn lanczos(x: f64, a: f64) -> f64 {
use std::f64::consts::PI;
if x < f64::EPSILON {
1.0
} else if -a <= x && x <= a {
(a * sin(PI * x) * sin(PI * x / a)) / (PI * PI * x * x)
} else {
0.0
}
}
const fn lanczos_lookup_array_size(n: u32, r: u32) -> usize { (2 * n * (r + 1) - 1) as usize }
const fn gen_lanczos_lookup<const N: u32, const R: u32>(
a: f64,
) -> [f64; lanczos_lookup_array_size(N, R)] {
let quadpng_n = N as f64;
let sample_radius = R as f64;
let step = 1.0 / (2.0 * quadpng_n);
let max = (quadpng_n - 1.0) / (2.0 * quadpng_n) + sample_radius;
let mut array = [0.0; lanczos_lookup_array_size(N, R)];
let mut i = 0;
while i < array.len() {
array[i] = lanczos(step * i as f64 - max, a);
i += 1;
}
array
}
impl<const N: u32> VoxelImageDecoding for QuadPngEncoding<N> {
fn start(data: &Self::Output) -> Option<Self::Workspace> {
use image::codecs::png::PngDecoder;
let (quad, indices, sprite_data) = data.decompress()?;
let ranges: [_; 4] = [
0..indices[0],
indices[0]..indices[1],
indices[1]..indices[2],
indices[2]..quad.len(),
];
let a = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[0].clone()])).ok()?)?;
let b = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[1].clone()])).ok()?)?;
let c = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[2].clone()])).ok()?)?;
let d = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[3].clone()])).ok()?)?;
Some((a, b, c, d, sprite_data, HashMap::new()))
}
fn get_block(ws: &Self::Workspace, x: u32, y: u32, is_border: bool) -> Block {
if let Some(kind) = BlockKind::from_u8(ws.0.get_pixel(x, y).0[0]) {
if kind.is_filled() {
let (w, h) = ws.3.dimensions();
let mut rgb = match 0 {
0 => {
const SAMPLE_RADIUS: i32 = 2i32; let mut rgb: Vec3<f64> = Vec3::zero();
let mut total = 0.0;
for dx in -SAMPLE_RADIUS..=SAMPLE_RADIUS {
for dy in -SAMPLE_RADIUS..=SAMPLE_RADIUS {
let (i, j) = (
(x.wrapping_add(dx as u32) / N),
(y.wrapping_add(dy as u32) / N),
);
if i < w && j < h {
let r = 5.0 - (dx.abs() + dy.abs()) as f64;
let pix = Vec3::<u8>::from(ws.3.get_pixel(i, j).0);
if pix != Vec3::zero() {
rgb += r * pix.as_();
total += r;
}
}
}
}
rgb /= total;
rgb
},
1 if N == 4 => {
const LANCZOS_A: f64 = 2.0; const SAMPLE_RADIUS: i32 = 2i32; const LANCZOS_LUT: [f64; lanczos_lookup_array_size(4, 2)] =
gen_lanczos_lookup::<4, 2>(LANCZOS_A);
let mut rgb: Vec3<f64> = Vec3::zero();
for dx in -SAMPLE_RADIUS..=SAMPLE_RADIUS {
for dy in -SAMPLE_RADIUS..=SAMPLE_RADIUS {
let (src_x, src_y) = (
(x.wrapping_add(dx as u32) / N),
(y.wrapping_add(dy as u32) / N),
);
if src_x < w && src_y < h {
let pix: Vec3<f64> =
Vec3::<u8>::from(ws.3.get_pixel(src_x, src_y).0).as_();
let x_rel = ((x % N) as f64 - (N - 1) as f64 / 2.0) / N as f64;
let y_rel = ((y % N) as f64 - (N - 1) as f64 / 2.0) / N as f64;
rgb += LANCZOS_LUT
.get((dx as f64 - x_rel).abs() as usize)
.unwrap_or(&0.0)
* LANCZOS_LUT
.get((dy as f64 - y_rel).abs() as usize)
.unwrap_or(&0.0)
* pix;
}
}
}
rgb
},
1 | 2 => {
const LANCZOS_A: f64 = 2.0; const SAMPLE_RADIUS: i32 = 2i32; let mut rgb: Vec3<f64> = Vec3::zero();
for dx in -SAMPLE_RADIUS..=SAMPLE_RADIUS {
for dy in -SAMPLE_RADIUS..=SAMPLE_RADIUS {
let (src_x, src_y) = (
(x.wrapping_add(dx as u32) / N),
(y.wrapping_add(dy as u32) / N),
);
if src_x < w && src_y < h {
let pix: Vec3<f64> =
Vec3::<u8>::from(ws.3.get_pixel(src_x, src_y).0).as_();
let x_rel = ((x % N) as f64 - (N - 1) as f64 / 2.0) / N as f64;
let y_rel = ((y % N) as f64 - (N - 1) as f64 / 2.0) / N as f64;
rgb += lanczos((dx as f64 - x_rel).abs(), LANCZOS_A)
* lanczos((dy as f64 - y_rel).abs(), LANCZOS_A)
* pix;
}
}
}
rgb
},
_ => Vec3::<u8>::from(ws.3.get_pixel(x / N, y / N).0).as_(),
};
if is_border {
rgb = Vec3::<u8>::from(ws.3.get_pixel(x / N, y / N).0).as_();
}
Block::new(kind, Rgb {
r: rgb.x as u8,
g: rgb.y as u8,
b: rgb.z as u8,
})
} else {
let index =
u16::from_be_bytes([ws.1.get_pixel(x, y).0[0], ws.2.get_pixel(x, y).0[0]]);
Block::from_raw(kind, ws.4[index as usize])
}
} else {
Block::empty()
}
}
}
#[derive(Debug, Clone, Copy, Serialize, Deserialize)]
pub struct TriPngEncoding<const AVERAGE_PALETTE: bool>();
impl<const AVERAGE_PALETTE: bool> VoxelImageEncoding for TriPngEncoding<AVERAGE_PALETTE> {
type Output = CompressedData<(Vec<u8>, Vec<Rgb<u8>>, [usize; 3], Vec<[u8; 3]>)>;
type Workspace = (
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
ImageBuffer<image::Luma<u8>, Vec<u8>>,
HashMap<BlockKind, HashMap<Rgb<u8>, usize>>,
Vec<[u8; 3]>,
HashMap<[u8; 3], u16>,
);
fn create(width: u32, height: u32) -> Self::Workspace {
(
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
ImageBuffer::new(width, height),
HashMap::new(),
Vec::new(),
HashMap::new(),
)
}
fn put_solid(&self, ws: &mut Self::Workspace, x: u32, y: u32, kind: BlockKind, rgb: Rgb<u8>) {
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([0]));
ws.2.put_pixel(x, y, image::Luma([0]));
if AVERAGE_PALETTE {
*ws.3.entry(kind).or_default().entry(rgb).or_insert(0) += 1;
}
}
fn put_sprite(
&self,
ws: &mut Self::Workspace,
x: u32,
y: u32,
kind: BlockKind,
sprite_data: [u8; 3],
) {
let index = ws.5.entry(sprite_data).or_insert_with(|| {
let index =
ws.4.len()
.try_into()
.expect("Cannot have more than 2^16 sprites in one chunk");
ws.4.push(sprite_data);
index
});
let index = index.to_be_bytes();
ws.0.put_pixel(x, y, image::Luma([kind as u8]));
ws.1.put_pixel(x, y, image::Luma([index[0]]));
ws.2.put_pixel(x, y, image::Luma([index[1]]));
}
fn finish(ws: &Self::Workspace) -> Option<Self::Output> {
let mut buf = Vec::new();
use image::codecs::png::{CompressionType, FilterType};
let mut indices = [0; 3];
let mut f = |x: &ImageBuffer<_, Vec<u8>>, i| {
let png = image::codecs::png::PngEncoder::new_with_quality(
&mut buf,
CompressionType::Fast,
FilterType::Up,
);
png.write_image(
x.as_raw(),
x.width(),
x.height(),
image::ExtendedColorType::L8,
)
.ok()?;
indices[i] = buf.len();
Some(())
};
f(&ws.0, 0)?;
f(&ws.1, 1)?;
f(&ws.2, 2)?;
let palette = if AVERAGE_PALETTE {
let mut palette = vec![Rgb { r: 0, g: 0, b: 0 }; 256];
for (block, hist) in ws.3.iter() {
let (mut r, mut g, mut b) = (0.0, 0.0, 0.0);
let mut total = 0;
for (color, count) in hist.iter() {
r += color.r as f64 * *count as f64;
g += color.g as f64 * *count as f64;
b += color.b as f64 * *count as f64;
total += *count;
}
r /= total as f64;
g /= total as f64;
b /= total as f64;
palette[*block as u8 as usize].r = r as u8;
palette[*block as u8 as usize].g = g as u8;
palette[*block as u8 as usize].b = b as u8;
}
palette
} else {
Vec::new()
};
Some(CompressedData::compress(
&(buf, palette, indices, ws.4.clone()),
4,
))
}
}
impl<const AVERAGE_PALETTE: bool> VoxelImageDecoding for TriPngEncoding<AVERAGE_PALETTE> {
fn start(data: &Self::Output) -> Option<Self::Workspace> {
use image::codecs::png::PngDecoder;
let (quad, palette, indices, sprite_data) = data.decompress()?;
let ranges: [_; 3] = [
0..indices[0],
indices[0]..indices[1],
indices[1]..indices[2],
];
let a = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[0].clone()])).ok()?)?;
let b = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[1].clone()])).ok()?)?;
let c = image_from_bytes(PngDecoder::new(Cursor::new(&quad[ranges[2].clone()])).ok()?)?;
let mut d: HashMap<_, HashMap<_, _>> = HashMap::new();
if AVERAGE_PALETTE {
for i in 0..=255 {
if let Some(block) = BlockKind::from_u8(i) {
d.entry(block)
.or_default()
.entry(palette[i as usize])
.insert(1);
}
}
}
Some((a, b, c, d, sprite_data, HashMap::new()))
}
fn get_block(ws: &Self::Workspace, x: u32, y: u32, _: bool) -> Block {
if let Some(kind) = BlockKind::from_u8(ws.0.get_pixel(x, y).0[0]) {
if kind.is_filled() {
let rgb = if AVERAGE_PALETTE {
*ws.3
.get(&kind)
.and_then(|h| h.keys().next())
.unwrap_or(&Rgb::default())
} else {
use BlockKind::*;
match kind {
Air | Water | Lava => Rgb { r: 0, g: 0, b: 0 },
Rock => Rgb {
r: 93,
g: 110,
b: 145,
},
WeakRock => Rgb {
r: 93,
g: 132,
b: 145,
},
GlowingRock => Rgb {
r: 61,
g: 229,
b: 198,
},
GlowingWeakRock => Rgb {
r: 61,
g: 185,
b: 240,
},
Grass => Rgb {
r: 51,
g: 160,
b: 94,
},
Snow => Rgb {
r: 192,
g: 255,
b: 255,
},
ArtSnow => Rgb {
r: 192,
g: 255,
b: 255,
},
Ice => Rgb {
r: 150,
g: 190,
b: 255,
},
Earth => Rgb {
r: 200,
g: 140,
b: 93,
},
Sand => Rgb {
r: 241,
g: 177,
b: 128,
},
Wood => Rgb {
r: 128,
g: 77,
b: 51,
},
Leaves => Rgb {
r: 93,
g: 206,
b: 64,
},
ArtLeaves => Rgb {
r: 93,
g: 206,
b: 64,
},
GlowingMushroom => Rgb {
r: 50,
g: 250,
b: 250,
},
Misc => Rgb {
r: 255,
g: 0,
b: 255,
},
}
};
Block::new(kind, rgb)
} else {
let index =
u16::from_be_bytes([ws.1.get_pixel(x, y).0[0], ws.2.get_pixel(x, y).0[0]]);
Block::from_raw(kind, ws.4[index as usize])
}
} else {
Block::empty()
}
}
}
pub fn image_terrain_chonk<S: RectVolSize, M: Clone, P: PackingFormula, VIE: VoxelImageEncoding>(
vie: &VIE,
packing: P,
chonk: &Chonk<Block, S, M>,
) -> Option<VIE::Output> {
image_terrain(
vie,
packing,
chonk,
Vec3::new(0, 0, chonk.get_min_z() as u32),
Vec3::new(S::RECT_SIZE.x, S::RECT_SIZE.y, chonk.get_max_z() as u32),
)
}
pub fn image_terrain_volgrid<
S: RectVolSize + Debug,
M: Clone + Debug,
P: PackingFormula,
VIE: VoxelImageEncoding,
>(
vie: &VIE,
packing: P,
volgrid: &VolGrid2d<Chonk<Block, S, M>>,
) -> Option<VIE::Output> {
let mut lo = Vec3::broadcast(i32::MAX);
let mut hi = Vec3::broadcast(i32::MIN);
for (pos, chonk) in volgrid.iter() {
lo.x = lo.x.min(pos.x * S::RECT_SIZE.x as i32);
lo.y = lo.y.min(pos.y * S::RECT_SIZE.y as i32);
lo.z = lo.z.min(chonk.get_min_z());
hi.x = hi.x.max((pos.x + 1) * S::RECT_SIZE.x as i32);
hi.y = hi.y.max((pos.y + 1) * S::RECT_SIZE.y as i32);
hi.z = hi.z.max(chonk.get_max_z());
}
image_terrain(vie, packing, volgrid, lo.as_(), hi.as_())
}
pub fn image_terrain<
V: BaseVol<Vox = Block> + ReadVol,
P: PackingFormula,
VIE: VoxelImageEncoding,
>(
vie: &VIE,
packing: P,
vol: &V,
lo: Vec3<u32>,
hi: Vec3<u32>,
) -> Option<VIE::Output> {
let dims = Vec3::new(
hi.x.wrapping_sub(lo.x),
hi.y.wrapping_sub(lo.y),
hi.z.wrapping_sub(lo.z),
);
let (width, height) = packing.dimensions(dims);
let mut image = VIE::create(width, height);
for z in 0..dims.z {
for y in 0..dims.y {
for x in 0..dims.x {
let (i, j) = packing.index(dims, x, y, z);
let block = *vol
.get(
Vec3::new(
x.wrapping_add(lo.x),
y.wrapping_add(lo.y),
z.wrapping_add(lo.z),
)
.as_(),
)
.unwrap_or(&Block::empty());
match (block.get_color(), block.get_sprite()) {
(Some(rgb), None) => {
VIE::put_solid(vie, &mut image, i, j, *block, rgb);
},
(None, Some(_)) => {
let data = block.to_u32().to_le_bytes();
VIE::put_sprite(vie, &mut image, i, j, *block, [data[1], data[2], data[3]]);
},
_ => panic!(
"attr being used for color vs sprite is mutually exclusive (and that's \
required for this translation to be lossless), but there's no way to \
guarantee that at the type level with Block's public API"
),
}
}
}
}
VIE::finish(&image)
}
pub fn write_image_terrain<
V: BaseVol<Vox = Block> + WriteVol,
P: PackingFormula,
VIE: VoxelImageEncoding + VoxelImageDecoding,
>(
_: VIE,
packing: P,
vol: &mut V,
data: &VIE::Output,
lo: Vec3<u32>,
hi: Vec3<u32>,
) -> Option<()> {
let ws = VIE::start(data)?;
let dims = Vec3::new(
hi.x.wrapping_sub(lo.x),
hi.y.wrapping_sub(lo.y),
hi.z.wrapping_sub(lo.z),
);
for z in 0..dims.z {
for y in 0..dims.y {
for x in 0..dims.x {
let (i, j) = packing.index(dims, x, y, z);
let is_border = x <= 1 || x >= dims.x - 2 || y <= 1 || y >= dims.y - 2;
let block = VIE::get_block(&ws, i, j, is_border);
if let Err(e) = vol.set(lo.as_() + Vec3::new(x, y, z).as_(), block) {
warn!(
"Error placing a block into a volume at {:?}: {:?}",
(x, y, z),
e
);
}
}
}
}
Some(())
}
#[derive(Debug, Clone, Serialize, Deserialize)]
pub struct WireChonk<VIE: VoxelImageEncoding, P: PackingFormula, M: Clone, S: RectVolSize> {
zmin: i32,
zmax: i32,
pub(crate) data: VIE::Output,
below: Block,
above: Block,
meta: M,
vie: VIE,
packing: P,
size: PhantomData<S>,
}
impl<VIE: VoxelImageEncoding + VoxelImageDecoding, P: PackingFormula, M: Clone, S: RectVolSize>
WireChonk<VIE, P, M, S>
{
pub fn from_chonk(vie: VIE, packing: P, chonk: &Chonk<Block, S, M>) -> Option<Self> {
let data = image_terrain_chonk(&vie, packing, chonk)?;
Some(Self {
zmin: chonk.get_min_z(),
zmax: chonk.get_max_z(),
data,
below: *chonk
.get(Vec3::new(0, 0, chonk.get_min_z().saturating_sub(1)))
.ok()?,
above: *chonk.get(Vec3::new(0, 0, chonk.get_max_z() + 1)).ok()?,
meta: chonk.meta().clone(),
vie,
packing,
size: PhantomData,
})
}
pub fn to_chonk(&self) -> Option<Chonk<Block, S, M>> {
let mut chonk = Chonk::new(self.zmin, self.below, self.above, self.meta.clone());
write_image_terrain(
&self.vie,
self.packing,
&mut chonk,
&self.data,
Vec3::new(0, 0, self.zmin as u32),
Vec3::new(S::RECT_SIZE.x, S::RECT_SIZE.y, self.zmax as u32),
)?;
Some(chonk)
}
}