veloren_common_systems/phys/mod.rs
1use common::{
2 comp::{
3 Body, CharacterState, Collider, Density, Immovable, Mass, Ori, PhysicsState, Pos,
4 PosVelOriDefer, PreviousPhysCache, Projectile, Scale, Stats, Sticky, Vel,
5 body::ship::{self, figuredata::VOXEL_COLLIDER_MANIFEST},
6 fluid_dynamics::{Fluid, Wings},
7 inventory::item::armor::Friction,
8 },
9 consts::{AIR_DENSITY, GRAVITY},
10 event::{EmitExt, EventBus, LandOnGroundEvent},
11 event_emitters,
12 link::Is,
13 mounting::{Rider, VolumeRider},
14 outcome::Outcome,
15 resources::{DeltaTime, GameMode, TimeOfDay},
16 spiral::Spiral2d,
17 states,
18 terrain::{CoordinateConversions, TerrainGrid},
19 uid::Uid,
20 util::{Dir, Projection, SpatialGrid},
21 weather::WeatherGrid,
22};
23use common_base::{prof_span, span};
24use common_ecs::{Job, Origin, ParMode, Phase, PhysicsMetrics, System};
25use rayon::iter::ParallelIterator;
26use specs::{
27 Entities, Join, LendJoin, ParJoin, Read, ReadExpect, ReadStorage, SystemData, Write,
28 WriteExpect, WriteStorage, shred,
29};
30use vek::*;
31
32mod collision;
33mod weather;
34use collision::ColliderData;
35
36/// The density of the fluid as a function of submersion ratio in given fluid
37/// where it is assumed that any unsubmersed part is is air.
38// TODO: Better suited partial submersion curve?
39fn fluid_density(height: f32, fluid: &Fluid) -> Density {
40 // If depth is less than our height (partial submersion), remove
41 // fluid density based on the ratio of displacement to full volume.
42 let immersion = fluid
43 .depth()
44 .map_or(1.0, |depth| (depth / height).clamp(0.0, 1.0));
45
46 Density(fluid.density().0 * immersion + AIR_DENSITY * (1.0 - immersion))
47}
48
49fn integrate_forces(
50 dt: &DeltaTime,
51 mut vel: Vel,
52 (body, wings): (&Body, Option<&Wings>),
53 density: &Density,
54 mass: &Mass,
55 fluid: &Fluid,
56 gravity: f32,
57 scale: Option<Scale>,
58) -> Vel {
59 let dim = body.dimensions();
60 let height = dim.z;
61 let rel_flow = fluid.relative_flow(&vel);
62 let fluid_density = fluid_density(height, fluid);
63 debug_assert!(mass.0 > 0.0);
64 debug_assert!(density.0 > 0.0);
65
66 // Aerodynamic/hydrodynamic forces
67 if !rel_flow.0.is_approx_zero() {
68 debug_assert!(!rel_flow.0.map(|a| a.is_nan()).reduce_or());
69 // HACK: We should really use the latter logic (i.e: `aerodynamic_forces`) for
70 // liquids, but it results in pretty serious dt-dependent problems that
71 // are extremely difficult to resolve. This is a compromise: for liquids
72 // only, we calculate drag using an incorrect (but still visually plausible)
73 // model that is much more resistant to differences in dt. Because it's
74 // physically incorrect anyway, there are magic coefficients that
75 // exist simply to get us closer to what water 'should' feel like.
76 if fluid.is_liquid() {
77 let fric = body
78 .drag_coefficient_liquid(fluid_density.0, scale.map_or(1.0, |s| s.0))
79 .powf(0.75)
80 * 0.02;
81
82 let fvel = fluid.flow_vel();
83
84 // Drag is relative to fluid velocity, so compensate before applying drag
85 vel.0 = (vel.0 - fvel.0) * (1.0 / (1.0 + fric)).powf(dt.0 * 10.0) + fvel.0;
86 } else {
87 let impulse = dt.0
88 * body.aerodynamic_forces(
89 &rel_flow,
90 fluid_density.0,
91 wings,
92 scale.map_or(1.0, |s| s.0),
93 );
94 debug_assert!(!impulse.map(|a| a.is_nan()).reduce_or());
95 if !impulse.is_approx_zero() {
96 let new_v = vel.0 + impulse / mass.0;
97 // If the new velocity is in the opposite direction, it's because the forces
98 // involved are too high for the current tick to handle. We deal with this by
99 // removing the component of our velocity vector along the direction of force.
100 // This way we can only ever lose velocity and will never experience a reverse
101 // in direction from events such as falling into water at high velocities.
102 if new_v.dot(vel.0) < 0.0 {
103 // Multiply by a factor to prevent full stop,
104 // as this can cause things to get stuck in high-density medium
105 vel.0 -= vel.0.projected(&impulse) * 0.9;
106 } else {
107 vel.0 = new_v;
108 }
109 }
110 }
111 debug_assert!(!vel.0.map(|a| a.is_nan()).reduce_or());
112 };
113
114 // Hydrostatic/aerostatic forces
115 // modify gravity to account for the effective density as a result of buoyancy
116 let down_force = dt.0 * gravity * (density.0 - fluid_density.0) / density.0;
117 vel.0.z -= down_force;
118
119 vel
120}
121
122fn calc_z_limit(char_state_maybe: Option<&CharacterState>, collider: &Collider) -> (f32, f32) {
123 let modifier = if char_state_maybe.is_some_and(|c_s| c_s.is_dodge() || c_s.is_glide()) {
124 0.5
125 } else {
126 1.0
127 };
128 collider.get_z_limits(modifier)
129}
130
131event_emitters! {
132 struct Events[Emitters] {
133 land_on_ground: LandOnGroundEvent,
134 }
135}
136
137/// This system applies forces and calculates new positions and velocities.
138#[derive(Default)]
139pub struct Sys;
140
141#[derive(SystemData)]
142pub struct PhysicsRead<'a> {
143 entities: Entities<'a>,
144 events: Events<'a>,
145 uids: ReadStorage<'a, Uid>,
146 terrain: ReadExpect<'a, TerrainGrid>,
147 dt: Read<'a, DeltaTime>,
148 game_mode: ReadExpect<'a, GameMode>,
149 scales: ReadStorage<'a, Scale>,
150 stickies: ReadStorage<'a, Sticky>,
151 immovables: ReadStorage<'a, Immovable>,
152 masses: ReadStorage<'a, Mass>,
153 colliders: ReadStorage<'a, Collider>,
154 is_riders: ReadStorage<'a, Is<Rider>>,
155 is_volume_riders: ReadStorage<'a, Is<VolumeRider>>,
156 projectiles: ReadStorage<'a, Projectile>,
157 character_states: ReadStorage<'a, CharacterState>,
158 bodies: ReadStorage<'a, Body>,
159 densities: ReadStorage<'a, Density>,
160 stats: ReadStorage<'a, Stats>,
161 weather: Option<Read<'a, WeatherGrid>>,
162 time_of_day: Read<'a, TimeOfDay>,
163}
164
165#[derive(SystemData)]
166pub struct PhysicsWrite<'a> {
167 physics_metrics: WriteExpect<'a, PhysicsMetrics>,
168 cached_spatial_grid: Write<'a, common::CachedSpatialGrid>,
169 physics_states: WriteStorage<'a, PhysicsState>,
170 positions: WriteStorage<'a, Pos>,
171 velocities: WriteStorage<'a, Vel>,
172 pos_vel_ori_defers: WriteStorage<'a, PosVelOriDefer>,
173 orientations: WriteStorage<'a, Ori>,
174 previous_phys_cache: WriteStorage<'a, PreviousPhysCache>,
175 outcomes: Read<'a, EventBus<Outcome>>,
176}
177
178#[derive(SystemData)]
179pub struct PhysicsData<'a> {
180 read: PhysicsRead<'a>,
181 write: PhysicsWrite<'a>,
182}
183
184impl PhysicsData<'_> {
185 /// Add/reset physics state components
186 fn reset(&mut self) {
187 span!(_guard, "Add/reset physics state components");
188 for (entity, _, _, _, _) in (
189 &self.read.entities,
190 &self.read.colliders,
191 &self.write.positions,
192 &self.write.velocities,
193 &self.write.orientations,
194 )
195 .join()
196 {
197 let _ = self
198 .write
199 .physics_states
200 .entry(entity)
201 .map(|e| e.or_insert_with(Default::default));
202 }
203 }
204
205 fn maintain_pushback_cache(&mut self) {
206 span!(_guard, "Maintain pushback cache");
207 // Add PreviousPhysCache for all relevant entities
208 for entity in (
209 &self.read.entities,
210 &self.read.colliders,
211 &self.write.velocities,
212 &self.write.positions,
213 !&self.write.previous_phys_cache,
214 )
215 .join()
216 .map(|(e, _, _, _, _)| e)
217 .collect::<Vec<_>>()
218 {
219 let _ = self
220 .write
221 .previous_phys_cache
222 .insert(entity, PreviousPhysCache {
223 velocity: Vec3::zero(),
224 velocity_dt: Vec3::zero(),
225 in_fluid: None,
226 center: Vec3::zero(),
227 collision_boundary: 0.0,
228 scale: 0.0,
229 scaled_radius: 0.0,
230 neighborhood_radius: 0.0,
231 origins: None,
232 pos: None,
233 ori: Quaternion::identity(),
234 });
235 }
236
237 // Update PreviousPhysCache
238 for (_, vel, position, ori, phys_state, phys_cache, collider, scale, cs) in (
239 &self.read.entities,
240 &self.write.velocities,
241 &self.write.positions,
242 &self.write.orientations,
243 &self.write.physics_states,
244 &mut self.write.previous_phys_cache,
245 &self.read.colliders,
246 self.read.scales.maybe(),
247 self.read.character_states.maybe(),
248 )
249 .join()
250 {
251 let scale = scale.map(|s| s.0).unwrap_or(1.0);
252 let z_limits = calc_z_limit(cs, collider);
253 let (z_min, z_max) = z_limits;
254 let (z_min, z_max) = (z_min * scale, z_max * scale);
255 let half_height = (z_max - z_min) / 2.0;
256
257 phys_cache.velocity_dt = vel.0 * self.read.dt.0;
258 phys_cache.velocity = vel.0;
259 phys_cache.in_fluid = phys_state.in_fluid;
260 let entity_center = position.0 + Vec3::new(0.0, 0.0, z_min + half_height);
261 let flat_radius = collider.bounding_radius() * scale;
262 let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt();
263
264 // Move center to the middle between OLD and OLD+VEL_DT
265 // so that we can reduce the collision_boundary.
266 phys_cache.center = entity_center + phys_cache.velocity_dt / 2.0;
267 phys_cache.collision_boundary = radius + (phys_cache.velocity_dt / 2.0).magnitude();
268 phys_cache.scale = scale;
269 phys_cache.scaled_radius = flat_radius;
270
271 let neighborhood_radius = match collider {
272 Collider::CapsulePrism { radius, .. } => radius * scale,
273 Collider::Voxel { .. } | Collider::Volume(_) | Collider::Point => flat_radius,
274 };
275 phys_cache.neighborhood_radius = neighborhood_radius;
276
277 let ori = ori.to_quat();
278 let origins = match collider {
279 Collider::CapsulePrism { p0, p1, .. } => {
280 let a = p1 - p0;
281 let len = a.magnitude();
282 // If origins are close enough, our capsule prism is cylinder
283 // with one origin which we don't even need to rotate.
284 //
285 // Other advantage of early-return is that we don't
286 // later divide by zero and return NaN
287 if len < f32::EPSILON * 10.0 {
288 Some((*p0, *p0))
289 } else {
290 // Apply orientation to origins of prism.
291 //
292 // We do this by building line between them,
293 // rotate it and then split back to origins.
294 // (Otherwise we will need to do the same with each
295 // origin).
296 //
297 // Cast it to 3d and then convert it back to 2d
298 // to apply quaternion.
299 let a = a.with_z(0.0);
300 let a = ori * a;
301 let a = a.xy();
302 // Previous operation could shrink x and y coordinates
303 // if orientation had Z parameter.
304 // Make sure we have the same length as before
305 // (and scale it, while we on it).
306 let a = a.normalized() * scale * len;
307 let p0 = -a / 2.0;
308 let p1 = a / 2.0;
309
310 Some((p0, p1))
311 }
312 },
313 Collider::Voxel { .. } | Collider::Volume(_) | Collider::Point => None,
314 };
315 phys_cache.origins = origins;
316 }
317 }
318
319 fn construct_spatial_grid(&mut self) -> SpatialGrid {
320 span!(_guard, "Construct spatial grid");
321 let &mut PhysicsData {
322 ref read,
323 ref write,
324 } = self;
325 // NOTE: i32 places certain constraints on how far out collision works
326 // NOTE: uses the radius of the entity and their current position rather than
327 // the radius of their bounding sphere for the current frame of movement
328 // because the nonmoving entity is what is collided against in the inner
329 // loop of the pushback collision code
330 // TODO: maintain frame to frame? (requires handling deletion)
331 // TODO: if not maintaining frame to frame consider counting entities to
332 // preallocate?
333 // TODO: assess parallelizing (overhead might dominate here? would need to merge
334 // the vecs in each hashmap)
335 let lg2_cell_size = 5;
336 let lg2_large_cell_size = 6;
337 let radius_cutoff = 8;
338 let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff);
339 for (entity, pos, phys_cache, _, _) in (
340 &read.entities,
341 &write.positions,
342 &write.previous_phys_cache,
343 write.velocities.mask(),
344 !&read.projectiles, // Not needed because they are skipped in the inner loop below
345 )
346 .join()
347 {
348 // Note: to not get too fine grained we use a 2D grid for now
349 let radius_2d = phys_cache.scaled_radius.ceil() as u32;
350 let pos_2d = pos.0.xy().map(|e| e as i32);
351 const POS_TRUNCATION_ERROR: u32 = 1;
352 spatial_grid.insert(pos_2d, radius_2d + POS_TRUNCATION_ERROR, entity);
353 }
354
355 spatial_grid
356 }
357
358 fn apply_pushback(&mut self, job: &mut Job<Sys>, spatial_grid: &SpatialGrid) {
359 span!(_guard, "Apply pushback");
360 job.cpu_stats.measure(ParMode::Rayon);
361 let &mut PhysicsData {
362 ref read,
363 ref mut write,
364 } = self;
365 let (positions, previous_phys_cache) = (&write.positions, &write.previous_phys_cache);
366 let metrics = (
367 &read.entities,
368 positions,
369 &mut write.velocities,
370 previous_phys_cache,
371 &read.masses,
372 &read.colliders,
373 read.is_riders.maybe(),
374 read.is_volume_riders.maybe(),
375 read.stickies.maybe(),
376 read.immovables.maybe(),
377 &mut write.physics_states,
378 // TODO: if we need to avoid collisions for other things consider
379 // moving whether it should interact into the collider component
380 // or into a separate component.
381 read.projectiles.maybe(),
382 read.character_states.maybe(),
383 )
384 .par_join()
385 .map_init(
386 || {
387 prof_span!(guard, "physics e<>e rayon job");
388 guard
389 },
390 |_guard,
391 (
392 entity,
393 pos,
394 vel,
395 previous_cache,
396 mass,
397 collider,
398 is_rider,
399 is_volume_rider,
400 sticky,
401 immovable,
402 physics,
403 projectile,
404 char_state_maybe,
405 )| {
406 let is_sticky = sticky.is_some();
407 let is_immovable = immovable.is_some();
408 let is_mid_air = physics.on_surface().is_none();
409 let mut entity_entity_collision_checks = 0;
410 let mut entity_entity_collisions = 0;
411
412 // TODO: quick fix for bad performance. At extrememly high
413 // velocities use oriented rectangles at some threshold of
414 // displacement/radius to query the spatial grid and limit
415 // max displacement per tick somehow.
416 if previous_cache.collision_boundary > 128.0 {
417 return PhysicsMetrics {
418 entity_entity_collision_checks,
419 entity_entity_collisions,
420 };
421 }
422
423 let z_limits = calc_z_limit(char_state_maybe, collider);
424
425 // Resets touch_entities in physics
426 physics.touch_entities.clear();
427
428 let is_projectile = projectile.is_some();
429
430 let mut vel_delta = Vec3::zero();
431
432 let query_center = previous_cache.center.xy();
433 let query_radius = previous_cache.collision_boundary;
434
435 spatial_grid
436 .in_circle_aabr(query_center, query_radius)
437 .filter_map(|entity| {
438 let uid = read.uids.get(entity)?;
439 let pos = positions.get(entity)?;
440 let previous_cache = previous_phys_cache.get(entity)?;
441 let mass = read.masses.get(entity)?;
442 let collider = read.colliders.get(entity)?;
443
444 Some((
445 entity,
446 uid,
447 pos,
448 previous_cache,
449 mass,
450 collider,
451 read.character_states.get(entity),
452 read.is_riders.get(entity),
453 ))
454 })
455 .for_each(
456 |(
457 entity_other,
458 other,
459 pos_other,
460 previous_cache_other,
461 mass_other,
462 collider_other,
463 char_state_other_maybe,
464 other_is_rider_maybe,
465 )| {
466 let collision_boundary = previous_cache.collision_boundary
467 + previous_cache_other.collision_boundary;
468 if previous_cache
469 .center
470 .distance_squared(previous_cache_other.center)
471 > collision_boundary.powi(2)
472 || entity == entity_other
473 {
474 return;
475 }
476
477 let z_limits_other =
478 calc_z_limit(char_state_other_maybe, collider_other);
479
480 entity_entity_collision_checks += 1;
481
482 const MIN_COLLISION_DIST: f32 = 0.3;
483
484 let increments = ((previous_cache.velocity_dt
485 - previous_cache_other.velocity_dt)
486 .magnitude()
487 / MIN_COLLISION_DIST)
488 .max(1.0)
489 .ceil()
490 as usize;
491 let step_delta = 1.0 / increments as f32;
492
493 let mut collision_registered = false;
494
495 for i in 0..increments {
496 let factor = i as f32 * step_delta;
497 // We are not interested if collision succeed
498 // or no as of now.
499 // Collision reaction is done inside.
500 let _ = collision::resolve_e2e_collision(
501 // utility variables for our entity
502 &mut collision_registered,
503 &mut entity_entity_collisions,
504 factor,
505 physics,
506 char_state_maybe,
507 &mut vel_delta,
508 step_delta,
509 // physics flags
510 is_mid_air,
511 is_sticky,
512 is_immovable,
513 is_projectile,
514 // entity we colliding with
515 *other,
516 // symetrical collider context
517 ColliderData {
518 pos,
519 previous_cache,
520 z_limits,
521 collider,
522 mass: *mass,
523 },
524 ColliderData {
525 pos: pos_other,
526 previous_cache: previous_cache_other,
527 z_limits: z_limits_other,
528 collider: collider_other,
529 mass: *mass_other,
530 },
531 vel,
532 is_rider.is_some()
533 || is_volume_rider.is_some()
534 || other_is_rider_maybe.is_some(),
535 );
536 }
537 },
538 );
539
540 // Change velocity
541 vel.0 += vel_delta * read.dt.0;
542
543 // Metrics
544 PhysicsMetrics {
545 entity_entity_collision_checks,
546 entity_entity_collisions,
547 }
548 },
549 )
550 .reduce(PhysicsMetrics::default, |old, new| PhysicsMetrics {
551 entity_entity_collision_checks: old.entity_entity_collision_checks
552 + new.entity_entity_collision_checks,
553 entity_entity_collisions: old.entity_entity_collisions
554 + new.entity_entity_collisions,
555 });
556 write.physics_metrics.entity_entity_collision_checks =
557 metrics.entity_entity_collision_checks;
558 write.physics_metrics.entity_entity_collisions = metrics.entity_entity_collisions;
559 }
560
561 fn construct_voxel_collider_spatial_grid(&mut self) -> SpatialGrid {
562 span!(_guard, "Construct voxel collider spatial grid");
563 let &mut PhysicsData {
564 ref read,
565 ref write,
566 } = self;
567
568 let voxel_colliders_manifest = VOXEL_COLLIDER_MANIFEST.read();
569
570 // NOTE: i32 places certain constraints on how far out collision works
571 // NOTE: uses the radius of the entity and their current position rather than
572 // the radius of their bounding sphere for the current frame of movement
573 // because the nonmoving entity is what is collided against in the inner
574 // loop of the pushback collision code
575 // TODO: optimize these parameters (especially radius cutoff)
576 let lg2_cell_size = 7; // 128
577 let lg2_large_cell_size = 8; // 256
578 let radius_cutoff = 64;
579 let mut spatial_grid = SpatialGrid::new(lg2_cell_size, lg2_large_cell_size, radius_cutoff);
580 // TODO: give voxel colliders their own component type
581 for (entity, pos, collider, scale, ori) in (
582 &read.entities,
583 &write.positions,
584 &read.colliders,
585 read.scales.maybe(),
586 &write.orientations,
587 )
588 .join()
589 {
590 let vol = collider.get_vol(&voxel_colliders_manifest);
591
592 if let Some(vol) = vol {
593 let sphere = collision::voxel_collider_bounding_sphere(vol, pos, ori, scale);
594 let radius = sphere.radius.ceil() as u32;
595 let pos_2d = sphere.center.xy().map(|e| e as i32);
596 const POS_TRUNCATION_ERROR: u32 = 1;
597 spatial_grid.insert(pos_2d, radius + POS_TRUNCATION_ERROR, entity);
598 }
599 }
600
601 spatial_grid
602 }
603
604 fn handle_movement_and_terrain(
605 &mut self,
606 job: &mut Job<Sys>,
607 voxel_collider_spatial_grid: &SpatialGrid,
608 ) {
609 let &mut PhysicsData {
610 ref read,
611 ref mut write,
612 } = self;
613
614 prof_span!(guard, "Apply Weather");
615 if let Some(weather) = &read.weather {
616 for (_, state, pos, phys) in (
617 &read.entities,
618 &read.character_states,
619 &write.positions,
620 &mut write.physics_states,
621 )
622 .join()
623 {
624 // Always reset air_vel to zero
625 let mut air_vel = Vec3::zero();
626
627 'simulation: {
628 // Don't simulate for non-gliding, for now
629 if !state.is_glide() {
630 break 'simulation;
631 }
632
633 let pos_2d = pos.0.as_().xy();
634 let chunk_pos: Vec2<i32> = pos_2d.wpos_to_cpos();
635 let Some(current_chunk) = &read.terrain.get_key(chunk_pos) else {
636 // oopsie
637 break 'simulation;
638 };
639
640 let meta = current_chunk.meta();
641
642 // Skip simulating for entites deeply under the ground
643 if pos.0.z < meta.alt() - 25.0 {
644 break 'simulation;
645 }
646
647 // If couldn't simulate wind for some reason, skip
648 if let Ok(simulated_vel) =
649 weather::simulated_wind_vel(pos, weather, &read.terrain, &read.time_of_day)
650 {
651 air_vel = simulated_vel
652 };
653 }
654
655 phys.in_fluid = phys.in_fluid.map(|f| match f {
656 Fluid::Air { elevation, .. } => Fluid::Air {
657 vel: Vel(air_vel),
658 elevation,
659 },
660 fluid => fluid,
661 });
662 }
663 }
664
665 drop(guard);
666
667 prof_span!(guard, "insert PosVelOriDefer");
668 // NOTE: keep in sync with join below
669 (
670 &read.entities,
671 read.colliders.mask(),
672 &write.positions,
673 &write.velocities,
674 &write.orientations,
675 write.orientations.mask(),
676 write.physics_states.mask(),
677 !&write.pos_vel_ori_defers, // This is the one we are adding
678 write.previous_phys_cache.mask(),
679 !&read.is_riders,
680 !&read.is_volume_riders,
681 )
682 .join()
683 .map(|t| (t.0, *t.2, *t.3, *t.4))
684 .collect::<Vec<_>>()
685 .into_iter()
686 .for_each(|(entity, pos, vel, ori)| {
687 let _ = write.pos_vel_ori_defers.insert(entity, PosVelOriDefer {
688 pos: Some(pos),
689 vel: Some(vel),
690 ori: Some(ori),
691 });
692 });
693 drop(guard);
694
695 // Apply movement inputs
696 span!(guard, "Apply movement");
697 let (positions, velocities) = (&write.positions, &mut write.velocities);
698
699 // First pass: update velocity using air resistance and gravity for each entity.
700 // We do this in a first pass because it helps keep things more stable for
701 // entities that are anchored to other entities (such as airships).
702 (
703 positions,
704 velocities,
705 read.stickies.maybe(),
706 &read.bodies,
707 read.character_states.maybe(),
708 &write.physics_states,
709 &read.masses,
710 &read.densities,
711 read.scales.maybe(),
712 !&read.is_riders,
713 !&read.is_volume_riders,
714 )
715 .par_join()
716 .for_each_init(
717 || {
718 prof_span!(guard, "velocity update rayon job");
719 guard
720 },
721 |_guard,
722 (
723 pos,
724 vel,
725 sticky,
726 body,
727 character_state,
728 physics_state,
729 mass,
730 density,
731 scale,
732 _,
733 _,
734 )| {
735 let in_loaded_chunk = read
736 .terrain
737 .contains_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32)));
738
739 // Apply physics only if in a loaded chunk
740 if in_loaded_chunk
741 // And not already stuck on a block (e.g., for arrows)
742 && !(physics_state.on_surface().is_some() && sticky.is_some())
743 // HACK: Special-case boats. Experimentally, clients are *bad* at making guesses about movement,
744 // and this is a particular problem for volume entities since careful control of velocity is
745 // required for nice movement of entities on top of the volume. Special-case volume entities here
746 // to prevent weird drag/gravity guesses messing with movement, relying on the client's hermite
747 // interpolation instead.
748 && !(matches!(body, Body::Ship(_)) && matches!(&*read.game_mode, GameMode::Client))
749 {
750 // Clamp dt to an effective 10 TPS, to prevent gravity
751 // from slamming the players into the floor when
752 // stationary if other systems cause the server
753 // to lag (as observed in the 0.9 release party).
754 let dt = DeltaTime(read.dt.0.min(0.1));
755
756 match physics_state.in_fluid {
757 None => {
758 vel.0.z -= dt.0 * GRAVITY;
759 },
760 Some(fluid) => {
761 let wings = match character_state {
762 Some(&CharacterState::Glide(states::glide::Data {
763 aspect_ratio,
764 planform_area,
765 ori,
766 ..
767 })) => Some(Wings {
768 aspect_ratio,
769 planform_area,
770 ori,
771 }),
772
773 _ => None,
774 };
775 vel.0 = integrate_forces(
776 &dt,
777 *vel,
778 (body, wings.as_ref()),
779 density,
780 mass,
781 &fluid,
782 GRAVITY,
783 scale.copied(),
784 )
785 .0
786 },
787 }
788 }
789 },
790 );
791 drop(guard);
792 job.cpu_stats.measure(ParMode::Single);
793
794 // Second pass: resolve collisions for terrain-like entities, this is required
795 // in order to update their positions before resolving collisions for
796 // non-terrain-like entities, since otherwise, collision is resolved
797 // based on where the terrain-like entity was in the previous frame.
798 Self::resolve_et_collision(job, read, write, voxel_collider_spatial_grid, true);
799
800 // Third pass: resolve collisions for non-terrain-like entities
801 Self::resolve_et_collision(job, read, write, voxel_collider_spatial_grid, false);
802
803 // Update cached 'old' physics values to the current values ready for the next
804 // tick
805 prof_span!(guard, "record ori into phys_cache");
806 for (pos, ori, previous_phys_cache) in (
807 &write.positions,
808 &write.orientations,
809 &mut write.previous_phys_cache,
810 )
811 .join()
812 {
813 // Note: updating ori with the rest of the cache values above was attempted but
814 // it did not work (investigate root cause?)
815 previous_phys_cache.pos = Some(*pos);
816 previous_phys_cache.ori = ori.to_quat();
817 }
818 drop(guard);
819 }
820
821 fn resolve_et_collision(
822 job: &mut Job<Sys>,
823 read: &PhysicsRead,
824 write: &mut PhysicsWrite,
825 voxel_collider_spatial_grid: &SpatialGrid,
826 terrain_like_entities: bool,
827 ) {
828 let (positions, velocities, previous_phys_cache, orientations) = (
829 &write.positions,
830 &write.velocities,
831 &write.previous_phys_cache,
832 &write.orientations,
833 );
834 span!(guard, "Apply terrain collision");
835 job.cpu_stats.measure(ParMode::Rayon);
836 let (land_on_grounds, outcomes) = (
837 &read.entities,
838 read.scales.maybe(),
839 read.stickies.maybe(),
840 &read.colliders,
841 positions,
842 velocities,
843 orientations,
844 read.bodies.maybe(),
845 read.character_states.maybe(),
846 &mut write.physics_states,
847 &mut write.pos_vel_ori_defers,
848 previous_phys_cache,
849 !&read.is_riders,
850 !&read.is_volume_riders,
851 )
852 .par_join()
853 .filter(|tuple| tuple.3.is_voxel() == terrain_like_entities)
854 .map_init(
855 || {
856 prof_span!(guard, "physics e<>t rayon job");
857 guard
858 },
859 |_guard,
860 (
861 entity,
862 scale,
863 sticky,
864 collider,
865 pos,
866 vel,
867 ori,
868 body,
869 character_state,
870 physics_state,
871 pos_vel_ori_defer,
872 previous_cache,
873 _,
874 _,
875 )| {
876 let mut land_on_ground = None;
877 let mut outcomes = Vec::new();
878 // Defer the writes of positions, velocities and orientations
879 // to allow an inner loop over terrain-like entities.
880 let old_vel = *vel;
881 let mut vel = *vel;
882 let old_ori = *ori;
883 let mut ori = *ori;
884
885 let scale = if collider.is_voxel() {
886 scale.map(|s| s.0).unwrap_or(1.0)
887 } else {
888 // TODO: Use scale & actual proportions when pathfinding is good
889 // enough to manage irregular entity sizes
890 1.0
891 };
892
893 if let Some(state) = character_state {
894 let footwear = state.footwear().unwrap_or(Friction::Normal);
895 if footwear != physics_state.footwear {
896 physics_state.footwear = footwear;
897 }
898 }
899
900 let in_loaded_chunk = read
901 .terrain
902 .contains_key(read.terrain.pos_key(pos.0.map(|e| e.floor() as i32)));
903
904 // Don't move if we're not in a loaded chunk
905 let pos_delta = if in_loaded_chunk {
906 vel.0 * read.dt.0
907 } else {
908 Vec3::zero()
909 };
910
911 let mut tgt_pos = pos.0 + pos_delta;
912
913 // What's going on here?
914 // Because collisions need to be resolved against multiple
915 // colliders, this code takes the current position and
916 // propagates it forward according to velocity to find a
917 // 'target' position.
918 //
919 // This is where we'd ideally end up at the end of the tick,
920 // assuming no collisions. Then, we refine this target by
921 // stepping from the original position to the target for
922 // every obstacle, refining the target position as we go.
923 //
924 // It's not perfect, but it works pretty well in practice.
925 // Oddities can occur on the intersection between multiple
926 // colliders, but it's not like any game physics system
927 // resolves these sort of things well anyway.
928 // At the very least, we don't do things that result in glitchy
929 // velocities or entirely broken position snapping.
930
931 let was_on_ground = physics_state.on_ground.is_some();
932 let block_snap =
933 body.is_some_and(|b| !matches!(b, Body::Object(_) | Body::Ship(_)));
934 let climbing =
935 character_state.is_some_and(|cs| matches!(cs, CharacterState::Climb(_)));
936
937 let friction_factor = |vel: Vec3<f32>| {
938 if let Some(Body::Ship(ship)) = body
939 && ship.has_wheels()
940 {
941 vel.try_normalized()
942 .and_then(|dir| {
943 Some(orientations.get(entity)?.right().dot(dir).abs())
944 })
945 .unwrap_or(1.0)
946 .max(0.2)
947 } else {
948 1.0
949 }
950 };
951
952 // Snap trains to the closest track, skipping other collision code
953 if matches!(body, Some(Body::Ship(ship::Body::Train)))
954 // Get the 9 closest chunks...
955 && let chunks = Spiral2d::new().take(9).filter_map(|r| read.terrain.get_key(tgt_pos.xy().as_().wpos_to_cpos() + r))
956 // ...and each track in those chunks.
957 && let tracks = chunks.flat_map(|c| c.meta().tracks().iter())
958 // Find the closest point on the closest track
959 && let Some(line) = tracks
960 .flat_map(|bez| (0..32).map(move |i| LineSegment3 {
961 start: bez.evaluate(i as f32 / 32.0),
962 end: bez.evaluate((i + 1) as f32 / 32.0),
963 }))
964 .min_by_key(|line| (line.distance_to_point(tgt_pos) * 1000.0) as i32)
965 {
966 let track_dir = (line.end - line.start).normalized();
967 let track_closest = line.projected_point(tgt_pos);
968
969 // vel.0 = track_dir * vel.0.dot(track_dir); // Clamp velocity to direction of rail
970 vel.0 += (track_closest - tgt_pos) / read.dt.0.max(0.001); // Correct velocity according to position update
971 // Clamp position to track
972 tgt_pos = track_closest;
973
974 // Apply friction
975 let fric = 0.0025f32;
976 vel.0 *= (1.0 - fric).powf(read.dt.0 * 60.0);
977
978 use common::terrain::{Block, BlockKind};
979 // Fake the train being sat on the ground
980 physics_state.on_ground = Some(Block::new(BlockKind::Rock, Rgb::zero()));
981 physics_state.in_fluid = Some(Fluid::Air {
982 elevation: tgt_pos.z,
983 vel: Vel::default(),
984 });
985
986 let train_dir = if ori.look_vec().dot(track_dir) > 0.0 {
987 Dir::new(track_dir)
988 } else {
989 Dir::new(-track_dir)
990 };
991 let tgt_ori = ori
992 .yawed_towards(train_dir)
993 .pitched_towards(train_dir)
994 .uprighted();
995 ori = ori.slerped_towards(tgt_ori, (1.0 - ori.angle_between(tgt_ori) * 25.0).clamp(0.15, 0.5));
996 } else {
997 match &collider {
998 Collider::Voxel { .. } | Collider::Volume(_) => {
999 // For now, treat entities with voxel colliders
1000 // as their bounding cylinders for the purposes of
1001 // colliding them with terrain.
1002 //
1003 // Additionally, multiply radius by 0.1 to make
1004 // the cylinder smaller to avoid lag.
1005 let radius = collider.bounding_radius() * scale * 0.1;
1006 let (_, z_max) = collider.get_z_limits(scale);
1007 let z_min = 0.0;
1008
1009 let mut cpos = *pos;
1010 let cylinder = (radius, z_min, z_max);
1011 collision::box_voxel_collision(
1012 cylinder,
1013 &*read.terrain,
1014 entity,
1015 &mut cpos,
1016 tgt_pos,
1017 &mut vel,
1018 physics_state,
1019 &read.dt,
1020 was_on_ground,
1021 block_snap,
1022 climbing,
1023 |entity, vel, surface_normal| {
1024 land_on_ground = Some((entity, vel, surface_normal))
1025 },
1026 read,
1027 &ori,
1028 friction_factor,
1029 );
1030 tgt_pos = cpos.0;
1031 },
1032 Collider::CapsulePrism {
1033 z_min: _,
1034 z_max,
1035 p0: _,
1036 p1: _,
1037 radius: _,
1038 } => {
1039 // Scale collider
1040 let radius = collider.bounding_radius().min(0.45) * scale;
1041 let z_min = 0.0;
1042 let z_max = z_max.clamped(1.2, 1.95) * scale;
1043
1044 let cylinder = (radius, z_min, z_max);
1045 let mut cpos = *pos;
1046 collision::box_voxel_collision(
1047 cylinder,
1048 &*read.terrain,
1049 entity,
1050 &mut cpos,
1051 tgt_pos,
1052 &mut vel,
1053 physics_state,
1054 &read.dt,
1055 was_on_ground,
1056 block_snap,
1057 climbing,
1058 |entity, vel, surface_normal| {
1059 land_on_ground = Some((entity, vel, surface_normal))
1060 },
1061 read,
1062 &ori,
1063 friction_factor,
1064 );
1065
1066 // Sticky things shouldn't move when on a surface
1067 if physics_state.on_surface().is_some() && sticky.is_some() {
1068 vel.0 = physics_state.ground_vel;
1069 }
1070
1071 tgt_pos = cpos.0;
1072 },
1073 Collider::Point => {
1074 let mut pos = *pos;
1075
1076 collision::point_voxel_collision(
1077 entity,
1078 &mut pos,
1079 pos_delta,
1080 &mut vel,
1081 physics_state,
1082 sticky.is_some(),
1083 &mut outcomes,
1084 read,
1085 );
1086
1087 tgt_pos = pos.0;
1088 },
1089 }
1090 }
1091
1092 // Compute center and radius of tick path bounding sphere
1093 // for the entity for broad checks of whether it will
1094 // collide with a voxel collider
1095 let path_sphere = {
1096 // TODO: duplicated with maintain_pushback_cache,
1097 // make a common function to call to compute all this info?
1098 let z_limits = calc_z_limit(character_state, collider);
1099 let z_limits = (z_limits.0 * scale, z_limits.1 * scale);
1100 let half_height = (z_limits.1 - z_limits.0) / 2.0;
1101
1102 let entity_center = pos.0 + (z_limits.0 + half_height) * Vec3::unit_z();
1103 let path_center = entity_center + pos_delta / 2.0;
1104
1105 let flat_radius = collider.bounding_radius() * scale;
1106 let radius = (flat_radius.powi(2) + half_height.powi(2)).sqrt();
1107 let path_bounding_radius = radius + (pos_delta / 2.0).magnitude();
1108
1109 Sphere {
1110 center: path_center,
1111 radius: path_bounding_radius,
1112 }
1113 };
1114 // Collide with terrain-like entities
1115 let query_center = path_sphere.center.xy();
1116 let query_radius = path_sphere.radius;
1117
1118 let voxel_colliders_manifest = VOXEL_COLLIDER_MANIFEST.read();
1119
1120 voxel_collider_spatial_grid
1121 .in_circle_aabr(query_center, query_radius)
1122 .filter_map(|entity| {
1123 positions.get(entity).and_then(|pos| {
1124 Some((
1125 entity,
1126 pos,
1127 velocities.get(entity)?,
1128 previous_phys_cache.get(entity)?,
1129 read.colliders.get(entity)?,
1130 read.scales.get(entity),
1131 orientations.get(entity)?,
1132 ))
1133 })
1134 })
1135 .for_each(
1136 |(
1137 entity_other,
1138 pos_other,
1139 vel_other,
1140 previous_cache_other,
1141 collider_other,
1142 scale_other,
1143 ori_other,
1144 )| {
1145 if entity == entity_other {
1146 return;
1147 }
1148
1149 let voxel_collider =
1150 collider_other.get_vol(&voxel_colliders_manifest);
1151
1152 // use bounding cylinder regardless of our collider
1153 // TODO: extract point-terrain collision above to its own
1154 // function
1155 let radius = collider.bounding_radius();
1156 let (_, z_max) = collider.get_z_limits(1.0);
1157
1158 let radius = radius.min(0.45) * scale;
1159 let z_min = 0.0;
1160 let z_max = z_max.clamped(1.2, 1.95) * scale;
1161
1162 if let Some(voxel_collider) = voxel_collider {
1163 // TODO: cache/precompute sphere?
1164 let voxel_sphere = collision::voxel_collider_bounding_sphere(
1165 voxel_collider,
1166 pos_other,
1167 ori_other,
1168 scale_other,
1169 );
1170 // Early check
1171 if voxel_sphere.center.distance_squared(path_sphere.center)
1172 > (voxel_sphere.radius + path_sphere.radius).powi(2)
1173 {
1174 return;
1175 }
1176
1177 let mut physics_state_delta = PhysicsState::default();
1178
1179 // Helper function for computing a transformation matrix and its
1180 // inverse. Should
1181 // be much cheaper than using `Mat4::inverted`.
1182 let from_to_matricies =
1183 |entity_rpos: Vec3<f32>, collider_ori: Quaternion<f32>| {
1184 (
1185 Mat4::<f32>::translation_3d(entity_rpos)
1186 * Mat4::from(collider_ori)
1187 * Mat4::scaling_3d(previous_cache_other.scale)
1188 * Mat4::translation_3d(
1189 voxel_collider.translation,
1190 ),
1191 Mat4::<f32>::translation_3d(
1192 -voxel_collider.translation,
1193 ) * Mat4::scaling_3d(
1194 1.0 / previous_cache_other.scale,
1195 ) * Mat4::from(collider_ori.inverse())
1196 * Mat4::translation_3d(-entity_rpos),
1197 )
1198 };
1199
1200 // Compute matrices that allow us to transform to and from the
1201 // coordinate space of
1202 // the collider. We have two variants of each, one for the
1203 // current state and one for
1204 // the previous state. This allows us to 'perfectly' track
1205 // change in position
1206 // between ticks, which prevents entities falling through voxel
1207 // colliders due to spurious
1208 // issues like differences in ping/variable dt.
1209 // TODO: Cache the matrices here to avoid recomputing for each
1210 // entity on them
1211 let (_transform_last_from, transform_last_to) =
1212 from_to_matricies(
1213 previous_cache_other.pos.unwrap_or(*pos_other).0
1214 - previous_cache.pos.unwrap_or(*pos).0,
1215 previous_cache_other.ori,
1216 );
1217 let (transform_from, transform_to) =
1218 from_to_matricies(pos_other.0 - pos.0, ori_other.to_quat());
1219
1220 // Compute the velocity of the collider, accounting for changes
1221 // in orientation
1222 // from the last tick. We then model this change as a change in
1223 // surface velocity
1224 // for the collider.
1225 let vel_other = {
1226 let pos_rel =
1227 (Mat4::<f32>::translation_3d(
1228 -voxel_collider.translation,
1229 ) * Mat4::from(ori_other.to_quat().inverse()))
1230 .mul_point(pos.0 - pos_other.0);
1231 let rpos_last =
1232 (Mat4::<f32>::from(previous_cache_other.ori)
1233 * Mat4::translation_3d(voxel_collider.translation))
1234 .mul_point(pos_rel);
1235 vel_other.0
1236 + (pos.0 - (pos_other.0 + rpos_last)) / read.dt.0
1237 };
1238
1239 {
1240 // Transform the entity attributes into the coordinate space
1241 // of the collider ready
1242 // for collision resolution
1243 let mut rpos =
1244 Pos(transform_last_to.mul_point(Vec3::zero()));
1245 vel.0 = previous_cache_other.ori.inverse()
1246 * (vel.0 - vel_other);
1247
1248 // Perform collision resolution
1249 collision::box_voxel_collision(
1250 (radius, z_min, z_max),
1251 &voxel_collider.volume(),
1252 entity,
1253 &mut rpos,
1254 transform_to.mul_point(tgt_pos - pos.0),
1255 &mut vel,
1256 &mut physics_state_delta,
1257 &read.dt,
1258 was_on_ground,
1259 block_snap,
1260 climbing,
1261 |entity, vel, surface_normal| {
1262 land_on_ground = Some((
1263 entity,
1264 Vel(previous_cache_other.ori * vel.0
1265 + vel_other),
1266 previous_cache_other.ori * surface_normal,
1267 ));
1268 },
1269 read,
1270 &ori,
1271 |vel| friction_factor(previous_cache_other.ori * vel),
1272 );
1273
1274 // Transform entity attributes back into world space now
1275 // that we've performed
1276 // collision resolution with them
1277 tgt_pos = transform_from.mul_point(rpos.0) + pos.0;
1278 vel.0 = previous_cache_other.ori * vel.0 + vel_other;
1279 }
1280
1281 // Collision resolution may also change the physics state. Since
1282 // we may be interacting
1283 // with multiple colliders at once (along with the regular
1284 // terrain!) we keep track
1285 // of a physics state 'delta' and try to sensibly resolve them
1286 // against one-another at each step.
1287 if physics_state_delta.on_ground.is_some() {
1288 // TODO: Do we need to do this? Perhaps just take the
1289 // ground_vel regardless?
1290 physics_state.ground_vel = previous_cache_other.ori
1291 * physics_state_delta.ground_vel
1292 + vel_other;
1293 }
1294 if physics_state_delta.on_surface().is_some() {
1295 // If the collision resulted in us being on a surface,
1296 // rotate us with the
1297 // collider. Really this should be modelled via friction or
1298 // something, but
1299 // our physics model doesn't really take orientation into
1300 // consideration.
1301 ori = ori.rotated(
1302 ori_other.to_quat()
1303 * previous_cache_other.ori.inverse(),
1304 );
1305 }
1306 physics_state.on_ground =
1307 physics_state.on_ground.or(physics_state_delta.on_ground);
1308 physics_state.on_ceiling |= physics_state_delta.on_ceiling;
1309 physics_state.on_wall = physics_state.on_wall.or_else(|| {
1310 physics_state_delta
1311 .on_wall
1312 .map(|dir| previous_cache_other.ori * dir)
1313 });
1314 physics_state.in_fluid = match (
1315 physics_state.in_fluid,
1316 physics_state_delta.in_fluid,
1317 ) {
1318 (Some(x), Some(y)) => x
1319 .depth()
1320 .and_then(|xh| {
1321 y.depth()
1322 .map(|yh| xh > yh)
1323 .unwrap_or(true)
1324 .then_some(x)
1325 })
1326 .or(Some(y)),
1327 (x @ Some(_), _) => x,
1328 (_, y @ Some(_)) => y,
1329 _ => None,
1330 };
1331 }
1332 },
1333 );
1334
1335 if tgt_pos != pos.0 {
1336 pos_vel_ori_defer.pos = Some(Pos(tgt_pos));
1337 } else {
1338 pos_vel_ori_defer.pos = None;
1339 }
1340 if vel != old_vel {
1341 pos_vel_ori_defer.vel = Some(vel);
1342 } else {
1343 pos_vel_ori_defer.vel = None;
1344 }
1345 if ori != old_ori {
1346 pos_vel_ori_defer.ori = Some(ori);
1347 } else {
1348 pos_vel_ori_defer.ori = None;
1349 }
1350
1351 (land_on_ground, outcomes)
1352 },
1353 )
1354 .fold(
1355 || (Vec::new(), Vec::new()),
1356 |(mut land_on_grounds, mut all_outcomes), (land_on_ground, mut outcomes)| {
1357 land_on_ground.map(|log| land_on_grounds.push(log));
1358 all_outcomes.append(&mut outcomes);
1359 (land_on_grounds, all_outcomes)
1360 },
1361 )
1362 .reduce(
1363 || (Vec::new(), Vec::new()),
1364 |(mut land_on_grounds_a, mut outcomes_a),
1365 (mut land_on_grounds_b, mut outcomes_b)| {
1366 land_on_grounds_a.append(&mut land_on_grounds_b);
1367 outcomes_a.append(&mut outcomes_b);
1368 (land_on_grounds_a, outcomes_a)
1369 },
1370 );
1371 drop(guard);
1372 job.cpu_stats.measure(ParMode::Single);
1373
1374 write.outcomes.emitter().emit_many(outcomes);
1375
1376 prof_span!(guard, "write deferred pos and vel");
1377 for (_, pos, vel, ori, pos_vel_ori_defer, _) in (
1378 &read.entities,
1379 &mut write.positions,
1380 &mut write.velocities,
1381 &mut write.orientations,
1382 &mut write.pos_vel_ori_defers,
1383 &read.colliders,
1384 )
1385 .join()
1386 .filter(|tuple| tuple.5.is_voxel() == terrain_like_entities)
1387 {
1388 if let Some(new_pos) = pos_vel_ori_defer.pos.take() {
1389 *pos = new_pos;
1390 }
1391 if let Some(new_vel) = pos_vel_ori_defer.vel.take() {
1392 *vel = new_vel;
1393 }
1394 if let Some(new_ori) = pos_vel_ori_defer.ori.take() {
1395 *ori = new_ori;
1396 }
1397 }
1398 drop(guard);
1399
1400 let mut emitters = read.events.get_emitters();
1401 emitters.emit_many(
1402 land_on_grounds
1403 .into_iter()
1404 .map(|(entity, vel, surface_normal)| LandOnGroundEvent {
1405 entity,
1406 vel: vel.0,
1407 surface_normal,
1408 }),
1409 );
1410 }
1411
1412 fn update_cached_spatial_grid(&mut self) {
1413 span!(_guard, "Update cached spatial grid");
1414 let &mut PhysicsData {
1415 ref read,
1416 ref mut write,
1417 } = self;
1418
1419 let spatial_grid = &mut write.cached_spatial_grid.0;
1420 spatial_grid.clear();
1421 (
1422 &read.entities,
1423 &write.positions,
1424 read.scales.maybe(),
1425 read.colliders.maybe(),
1426 )
1427 .join()
1428 .for_each(|(entity, pos, scale, collider)| {
1429 let scale = scale.map(|s| s.0).unwrap_or(1.0);
1430 let radius_2d =
1431 (collider.map(|c| c.bounding_radius()).unwrap_or(0.5) * scale).ceil() as u32;
1432 let pos_2d = pos.0.xy().map(|e| e as i32);
1433 const POS_TRUNCATION_ERROR: u32 = 1;
1434 spatial_grid.insert(pos_2d, radius_2d + POS_TRUNCATION_ERROR, entity);
1435 });
1436 }
1437}
1438
1439impl<'a> System<'a> for Sys {
1440 type SystemData = PhysicsData<'a>;
1441
1442 const NAME: &'static str = "phys";
1443 const ORIGIN: Origin = Origin::Common;
1444 const PHASE: Phase = Phase::Create;
1445
1446 fn run(job: &mut Job<Self>, mut physics_data: Self::SystemData) {
1447 physics_data.reset();
1448
1449 // Apply pushback
1450 //
1451 // Note: We now do this first because we project velocity ahead. This is slighty
1452 // imperfect and implies that we might get edge-cases where entities
1453 // standing right next to the edge of a wall may get hit by projectiles
1454 // fired into the wall very close to them. However, this sort of thing is
1455 // already possible with poorly-defined hitboxes anyway so it's not too
1456 // much of a concern.
1457 //
1458 // If this situation becomes a problem, this code should be integrated with the
1459 // terrain collision code below, although that's not trivial to do since
1460 // it means the step needs to take into account the speeds of both
1461 // entities.
1462 physics_data.maintain_pushback_cache();
1463
1464 let spatial_grid = physics_data.construct_spatial_grid();
1465 physics_data.apply_pushback(job, &spatial_grid);
1466
1467 let voxel_collider_spatial_grid = physics_data.construct_voxel_collider_spatial_grid();
1468 physics_data.handle_movement_and_terrain(job, &voxel_collider_spatial_grid);
1469
1470 // Spatial grid used by other systems
1471 physics_data.update_cached_spatial_grid();
1472 }
1473}