1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765
#[cfg(not(feature = "worldgen"))]
use crate::test_world::{IndexOwned, World};
#[cfg(feature = "persistent_world")]
use crate::TerrainPersistence;
use tracing::error;
#[cfg(feature = "worldgen")]
use world::{IndexOwned, World};
#[cfg(feature = "worldgen")] use crate::rtsim;
use crate::{
chunk_generator::ChunkGenerator, chunk_serialize::ChunkSendEntry, client::Client,
presence::RepositionOnChunkLoad, settings::Settings, ChunkRequest, Tick,
};
use common::{
calendar::Calendar,
combat::DeathEffects,
comp::{
self, agent, biped_small, bird_medium, BehaviorCapability, ForceUpdate, Pos, Presence,
Waypoint,
},
event::{CreateNpcEvent, CreateSpecialEntityEvent, EmitExt, EventBus, NpcBuilder},
event_emitters,
generation::{EntityInfo, SpecialEntity},
lottery::LootSpec,
resources::{Time, TimeOfDay},
slowjob::SlowJobPool,
terrain::TerrainGrid,
util::Dir,
SkillSetBuilder,
};
use common_ecs::{Job, Origin, Phase, System};
use common_net::msg::ServerGeneral;
use common_state::TerrainChanges;
use comp::Behavior;
use core::cmp::Reverse;
use itertools::Itertools;
use rayon::{iter::Either, prelude::*};
use specs::{
shred, storage::GenericReadStorage, Entities, Entity, Join, LendJoin, ParJoin, Read,
ReadExpect, ReadStorage, SystemData, Write, WriteExpect, WriteStorage,
};
use std::{f32::consts::TAU, sync::Arc};
use vek::*;
#[cfg(feature = "persistent_world")]
pub type TerrainPersistenceData<'a> = Option<Write<'a, TerrainPersistence>>;
#[cfg(not(feature = "persistent_world"))]
pub type TerrainPersistenceData<'a> = ();
pub const SAFE_ZONE_RADIUS: f32 = 200.0;
#[cfg(feature = "worldgen")]
type RtSimData<'a> = WriteExpect<'a, rtsim::RtSim>;
#[cfg(not(feature = "worldgen"))]
type RtSimData<'a> = ();
event_emitters! {
struct Events[Emitters] {
create_npc: CreateNpcEvent,
create_waypoint: CreateSpecialEntityEvent,
}
}
#[derive(SystemData)]
pub struct Data<'a> {
events: Events<'a>,
tick: Read<'a, Tick>,
server_settings: Read<'a, Settings>,
time_of_day: Read<'a, TimeOfDay>,
calendar: Read<'a, Calendar>,
slow_jobs: ReadExpect<'a, SlowJobPool>,
index: ReadExpect<'a, IndexOwned>,
world: ReadExpect<'a, Arc<World>>,
chunk_send_bus: ReadExpect<'a, EventBus<ChunkSendEntry>>,
chunk_generator: WriteExpect<'a, ChunkGenerator>,
terrain: WriteExpect<'a, TerrainGrid>,
terrain_changes: Write<'a, TerrainChanges>,
chunk_requests: Write<'a, Vec<ChunkRequest>>,
rtsim: RtSimData<'a>,
#[cfg(feature = "persistent_world")]
terrain_persistence: TerrainPersistenceData<'a>,
positions: WriteStorage<'a, Pos>,
presences: ReadStorage<'a, Presence>,
clients: ReadStorage<'a, Client>,
entities: Entities<'a>,
reposition_on_load: WriteStorage<'a, RepositionOnChunkLoad>,
forced_updates: WriteStorage<'a, ForceUpdate>,
waypoints: WriteStorage<'a, Waypoint>,
time: ReadExpect<'a, Time>,
}
/// This system will handle loading generated chunks and unloading
/// unneeded chunks.
/// 1. Inserts newly generated chunks into the TerrainGrid
/// 2. Sends new chunks to nearby clients
/// 3. Handles the chunk's supplement (e.g. npcs)
/// 4. Removes chunks outside the range of players
#[derive(Default)]
pub struct Sys;
impl<'a> System<'a> for Sys {
#[allow(clippy::type_complexity)]
type SystemData = Data<'a>;
const NAME: &'static str = "terrain";
const ORIGIN: Origin = Origin::Server;
const PHASE: Phase = Phase::Create;
fn run(_job: &mut Job<Self>, mut data: Self::SystemData) {
let mut emitters = data.events.get_emitters();
// Generate requested chunks
//
// Submit requests for chunks right before receiving finished chunks so that we
// don't create duplicate work for chunks that just finished but are not
// yet added to the terrain.
data.chunk_requests.drain(..).for_each(|request| {
data.chunk_generator.generate_chunk(
Some(request.entity),
request.key,
&data.slow_jobs,
Arc::clone(&data.world),
&data.rtsim,
data.index.clone(),
(*data.time_of_day, data.calendar.clone()),
)
});
let mut rng = rand::thread_rng();
// Fetch any generated `TerrainChunk`s and insert them into the terrain.
// Also, send the chunk data to anybody that is close by.
let mut new_chunks = Vec::new();
'insert_terrain_chunks: while let Some((key, res)) = data.chunk_generator.recv_new_chunk() {
#[allow(unused_mut)]
let (mut chunk, supplement) = match res {
Ok((chunk, supplement)) => (chunk, supplement),
Err(Some(entity)) => {
if let Some(client) = data.clients.get(entity) {
client.send_fallible(ServerGeneral::TerrainChunkUpdate {
key,
chunk: Err(()),
});
}
continue 'insert_terrain_chunks;
},
Err(None) => {
continue 'insert_terrain_chunks;
},
};
// Apply changes from terrain persistence to this chunk
#[cfg(feature = "persistent_world")]
if let Some(terrain_persistence) = data.terrain_persistence.as_mut() {
terrain_persistence.apply_changes(key, &mut chunk);
}
// Arcify the chunk
let chunk = Arc::new(chunk);
// Add to list of chunks to send to nearby players.
new_chunks.push(key);
// TODO: code duplication for chunk insertion between here and state.rs
// Insert the chunk into terrain changes
if data.terrain.insert(key, chunk).is_some() {
data.terrain_changes.modified_chunks.insert(key);
} else {
data.terrain_changes.new_chunks.insert(key);
#[cfg(feature = "worldgen")]
data.rtsim
.hook_load_chunk(key, supplement.rtsim_max_resources);
}
// Handle chunk supplement
for entity in supplement.entities {
// Check this because it's a common source of weird bugs
assert!(
data.terrain
.pos_key(entity.pos.map(|e| e.floor() as i32))
.map2(key, |e, tgt| (e - tgt).abs() <= 1)
.reduce_and(),
"Chunk spawned entity that wasn't nearby",
);
let data = SpawnEntityData::from_entity_info(entity);
match data {
SpawnEntityData::Special(pos, entity) => {
emitters.emit(CreateSpecialEntityEvent { pos, entity });
},
SpawnEntityData::Npc(data) => {
let (npc_builder, pos) = data.to_npc_builder();
emitters.emit(CreateNpcEvent {
pos,
ori: comp::Ori::from(Dir::random_2d(&mut rng)),
npc: npc_builder.with_anchor(comp::Anchor::Chunk(key)),
rider: None,
});
},
}
}
}
// TODO: Consider putting this in another system since this forces us to take
// positions by write rather than read access.
let repositioned = (&data.entities, &mut data.positions, (&mut data.forced_updates).maybe(), &data.reposition_on_load)
// TODO: Consider using par_bridge() because Rayon has very poor work splitting for
// sparse joins.
.par_join()
.filter_map(|(entity, pos, force_update, reposition)| {
// NOTE: We use regular as casts rather than as_ because we want to saturate on
// overflow.
let entity_pos = pos.0.map(|x| x as i32);
// If an entity is marked as needing repositioning once the chunk loads (e.g.
// from having just logged in), reposition them.
let chunk_pos = TerrainGrid::chunk_key(entity_pos);
let chunk = data.terrain.get_key(chunk_pos)?;
let new_pos = if reposition.needs_ground {
data.terrain.try_find_ground(entity_pos)
} else {
data.terrain.try_find_space(entity_pos)
}.map(|x| x.as_::<f32>()).unwrap_or_else(|| chunk.find_accessible_pos(entity_pos.xy(), false));
pos.0 = new_pos;
force_update.map(|force_update| force_update.update());
Some((entity, new_pos))
})
.collect::<Vec<_>>();
for (entity, new_pos) in repositioned {
if let Some(waypoint) = data.waypoints.get_mut(entity) {
*waypoint = Waypoint::new(new_pos, *data.time);
}
data.reposition_on_load.remove(entity);
}
let max_view_distance = data.server_settings.max_view_distance.unwrap_or(u32::MAX);
#[cfg(feature = "worldgen")]
let world_size = data.world.sim().get_size();
#[cfg(not(feature = "worldgen"))]
let world_size = data.world.map_size_lg().chunks().map(u32::from);
let (presences_position_entities, presences_positions) = prepare_player_presences(
world_size,
max_view_distance,
&data.entities,
&data.positions,
&data.presences,
&data.clients,
);
let real_max_view_distance = convert_to_loaded_vd(u32::MAX, max_view_distance);
// Send the chunks to all nearby players.
new_chunks.par_iter().for_each_init(
|| data.chunk_send_bus.emitter(),
|chunk_send_emitter, chunk_key| {
// We only have to check players inside the maximum view distance of the server
// of our own position.
//
// We start by partitioning by X, finding only entities in chunks within the X
// range of us. These are guaranteed in bounds due to restrictions on max view
// distance (namely: the square of any chunk coordinate plus the max view
// distance along both axes must fit in an i32).
let min_chunk_x = chunk_key.x - real_max_view_distance;
let max_chunk_x = chunk_key.x + real_max_view_distance;
let start = presences_position_entities
.partition_point(|((pos, _), _)| i32::from(pos.x) < min_chunk_x);
// NOTE: We *could* just scan forward until we hit the end, but this way we save
// a comparison in the inner loop, since also needs to check the
// list length. We could also save some time by starting from
// start rather than end, but the hope is that this way the
// compiler (and machine) can reorder things so both ends are
// fetched in parallel; since the vast majority of the time both fetched
// elements should already be in cache, this should not use any
// extra memory bandwidth.
//
// TODO: Benchmark and figure out whether this is better in practice than just
// scanning forward.
let end = presences_position_entities
.partition_point(|((pos, _), _)| i32::from(pos.x) < max_chunk_x);
let interior = &presences_position_entities[start..end];
interior
.iter()
.filter(|((player_chunk_pos, player_vd_sqr), _)| {
chunk_in_vd(*player_chunk_pos, *player_vd_sqr, *chunk_key)
})
.for_each(|(_, entity)| {
chunk_send_emitter.emit(ChunkSendEntry {
entity: *entity,
chunk_key: *chunk_key,
});
});
},
);
let tick = (data.tick.0 % 16) as i32;
// Remove chunks that are too far from players.
//
// Note that all chunks involved here (both terrain chunks and pending chunks)
// are guaranteed in bounds. This simplifies the rest of the logic
// here.
let chunks_to_remove = data.terrain
.par_keys()
.copied()
// There may be lots of pending chunks, so don't check them all. This should be okay
// as long as we're maintaining a reasonable tick rate.
.chain(data.chunk_generator.par_pending_chunks())
// Don't check every chunk every tick (spread over 16 ticks)
//
// TODO: Investigate whether we can add support for performing this filtering directly
// within hashbrown (basically, specify we want to iterate through just buckets with
// hashes in a particular range). This could provide significiant speedups since we
// could avoid having to iterate through a bunch of buckets we don't care about.
//
// TODO: Make the percentage of the buckets that we go through adjust dynamically
// depending on the current number of chunks. In the worst case, we might want to scan
// just 1/256 of the chunks each tick, for example.
.filter(|k| k.x % 4 + (k.y % 4) * 4 == tick)
.filter(|&chunk_key| {
// We only have to check players inside the maximum view distance of the server of
// our own position.
//
// We start by partitioning by X, finding only entities in chunks within the X
// range of us. These are guaranteed in bounds due to restrictions on max view
// distance (namely: the square of any chunk coordinate plus the max view distance
// along both axes must fit in an i32).
let min_chunk_x = chunk_key.x - real_max_view_distance;
let max_chunk_x = chunk_key.x + real_max_view_distance;
let start = presences_positions
.partition_point(|(pos, _)| i32::from(pos.x) < min_chunk_x);
// NOTE: We *could* just scan forward until we hit the end, but this way we save a
// comparison in the inner loop, since also needs to check the list length. We
// could also save some time by starting from start rather than end, but the hope
// is that this way the compiler (and machine) can reorder things so both ends are
// fetched in parallel; since the vast majority of the time both fetched elements
// should already be in cache, this should not use any extra memory bandwidth.
//
// TODO: Benchmark and figure out whether this is better in practice than just
// scanning forward.
let end = presences_positions
.partition_point(|(pos, _)| i32::from(pos.x) < max_chunk_x);
let interior = &presences_positions[start..end];
!interior.iter().any(|&(player_chunk_pos, player_vd_sqr)| {
chunk_in_vd(player_chunk_pos, player_vd_sqr, chunk_key)
})
})
.collect::<Vec<_>>();
let chunks_to_remove = chunks_to_remove
.into_iter()
.filter_map(|key| {
// Register the unloading of this chunk from terrain persistence
#[cfg(feature = "persistent_world")]
if let Some(terrain_persistence) = data.terrain_persistence.as_mut() {
terrain_persistence.unload_chunk(key);
}
data.chunk_generator.cancel_if_pending(key);
// If you want to trigger any behaivour on unload, do it in `Server::tick` by
// reading `TerrainChanges::removed_chunks` since chunks can also be removed
// using eg. /reload_chunks
// TODO: code duplication for chunk insertion between here and state.rs
data.terrain.remove(key).inspect(|_| {
data.terrain_changes.removed_chunks.insert(key);
})
})
.collect::<Vec<_>>();
if !chunks_to_remove.is_empty() {
// Drop chunks in a background thread.
data.slow_jobs.spawn("CHUNK_DROP", move || {
drop(chunks_to_remove);
});
}
}
}
// TODO: better name
#[derive(Debug)]
pub struct NpcData {
pub pos: Pos,
pub stats: comp::Stats,
pub skill_set: comp::SkillSet,
pub health: Option<comp::Health>,
pub poise: comp::Poise,
pub inventory: comp::inventory::Inventory,
pub agent: Option<comp::Agent>,
pub body: comp::Body,
pub alignment: comp::Alignment,
pub scale: comp::Scale,
pub loot: LootSpec<String>,
pub pets: Vec<(NpcData, Vec3<f32>)>,
pub death_effects: Option<DeathEffects>,
}
/// Convinient structure to use when you need to create new npc
/// from EntityInfo
// TODO: better name?
// TODO: if this is send around network, optimize the large_enum_variant
#[allow(clippy::large_enum_variant)]
#[derive(Debug)]
pub enum SpawnEntityData {
Npc(NpcData),
Special(Vec3<f32>, SpecialEntity),
}
impl SpawnEntityData {
pub fn from_entity_info(entity: EntityInfo) -> Self {
let EntityInfo {
// flags
special_entity,
has_agency,
agent_mark,
alignment,
no_flee,
idle_wander_factor,
aggro_range_multiplier,
// stats
body,
name,
scale,
pos,
loot,
// tools and skills
skillset_asset,
loadout: mut loadout_builder,
inventory: items,
make_loadout,
trading_information: economy,
pets,
death_effects,
} = entity;
if let Some(special) = special_entity {
return Self::Special(pos, special);
}
let name = name.unwrap_or_else(|| "Unnamed".to_string());
let stats = comp::Stats::new(name, body);
let skill_set = {
let skillset_builder = SkillSetBuilder::default();
if let Some(skillset_asset) = skillset_asset {
skillset_builder.with_asset_expect(&skillset_asset).build()
} else {
skillset_builder.build()
}
};
let inventory = {
// Evaluate lazy function for loadout creation
if let Some(make_loadout) = make_loadout {
loadout_builder =
loadout_builder.with_creator(make_loadout, economy.as_ref(), None);
}
let loadout = loadout_builder.build();
let mut inventory = comp::inventory::Inventory::with_loadout(loadout, body);
for (num, mut item) in items {
if let Err(e) = item.set_amount(num) {
tracing::warn!(
"error during creating inventory for {name} at {pos}: {e:?}",
name = &stats.name,
);
}
if let Err(e) = inventory.push(item) {
tracing::warn!(
"error during creating inventory for {name} at {pos}: {e:?}",
name = &stats.name,
);
}
}
inventory
};
let health = Some(comp::Health::new(body));
let poise = comp::Poise::new(body);
// Allow Humanoid, BirdMedium, and Parrot to speak
let can_speak = match body {
comp::Body::Humanoid(_) => true,
comp::Body::BipedSmall(biped_small) => {
matches!(biped_small.species, biped_small::Species::Flamekeeper)
},
comp::Body::BirdMedium(bird_medium) => match bird_medium.species {
bird_medium::Species::Parrot => alignment == comp::Alignment::Npc,
_ => false,
},
_ => false,
};
let trade_for_site = if matches!(agent_mark, Some(agent::Mark::Merchant)) {
economy.map(|e| e.id)
} else {
None
};
let agent = has_agency.then(|| {
let mut agent = comp::Agent::from_body(&body).with_behavior(
Behavior::default()
.maybe_with_capabilities(can_speak.then_some(BehaviorCapability::SPEAK))
.maybe_with_capabilities(trade_for_site.map(|_| BehaviorCapability::TRADE))
.with_trade_site(trade_for_site),
);
// Non-humanoids get a patrol origin to stop them moving too far
if !matches!(body, comp::Body::Humanoid(_)) {
agent = agent.with_patrol_origin(pos);
}
agent
.with_no_flee_if(matches!(agent_mark, Some(agent::Mark::Guard)) || no_flee)
.with_idle_wander_factor(idle_wander_factor)
.with_aggro_range_multiplier(aggro_range_multiplier)
});
let agent = if matches!(alignment, comp::Alignment::Enemy)
&& matches!(body, comp::Body::Humanoid(_))
{
agent.map(|a| a.with_aggro_no_warn().with_no_flee_if(true))
} else {
agent
};
SpawnEntityData::Npc(NpcData {
pos: Pos(pos),
stats,
skill_set,
health,
poise,
inventory,
agent,
body,
alignment,
scale: comp::Scale(scale),
loot,
pets: {
let pet_count = pets.len() as f32;
pets.into_iter()
.enumerate()
.flat_map(|(i, pet)| {
Some((
SpawnEntityData::from_entity_info(pet)
.into_npc_data_inner()
.inspect_err(|data| {
error!("Pets must be SpawnEntityData::Npc, but found: {data:?}")
})
.ok()?,
Vec2::one()
.rotated_z(TAU * (i as f32 / pet_count))
.with_z(0.0)
* ((pet_count * 3.0) / TAU),
))
})
.collect()
},
death_effects,
})
}
pub fn into_npc_data_inner(self) -> Result<NpcData, Self> {
match self {
SpawnEntityData::Npc(inner) => Ok(inner),
other => Err(other),
}
}
}
impl NpcData {
pub fn to_npc_builder(self) -> (NpcBuilder, comp::Pos) {
let NpcData {
pos,
stats,
skill_set,
health,
poise,
inventory,
agent,
body,
alignment,
scale,
loot,
pets,
death_effects,
} = self;
(
NpcBuilder::new(stats, body, alignment)
.with_skill_set(skill_set)
.with_health(health)
.with_poise(poise)
.with_inventory(inventory)
.with_agent(agent)
.with_scale(scale)
.with_loot(loot)
.with_pets(
pets.into_iter()
.map(|(pet, offset)| (pet.to_npc_builder().0, offset))
.collect::<Vec<_>>(),
)
.with_death_effects(death_effects),
pos,
)
}
}
pub fn convert_to_loaded_vd(vd: u32, max_view_distance: u32) -> i32 {
// Hardcoded max VD to prevent stupid view distances from creating overflows.
// This must be a value ≤
// √(i32::MAX - 2 * ((1 << (MAX_WORLD_BLOCKS_LG - TERRAIN_CHUNK_BLOCKS_LG) - 1)²
// - 1)) / 2
//
// since otherwise we could end up overflowing. Since it is a requirement that
// each dimension (in chunks) has to fit in a i16, we can derive √((1<<31)-1
// - 2*((1<<15)-1)^2) / 2 ≥ 1 << 7 as the absolute limit.
//
// TODO: Make this more official and use it elsewhere.
const MAX_VD: u32 = 1 << 7;
// This fuzzy threshold prevents chunks rapidly unloading and reloading when
// players move over a chunk border.
const UNLOAD_THRESHOLD: u32 = 2;
// NOTE: This cast is safe for the reasons mentioned above.
(vd.clamp(crate::MIN_VD, max_view_distance)
.saturating_add(UNLOAD_THRESHOLD))
.min(MAX_VD) as i32
}
/// Returns: ((player_chunk_pos, player_vd_squared), entity, is_client)
fn prepare_for_vd_check(
world_aabr_in_chunks: &Aabr<i32>,
max_view_distance: u32,
entity: Entity,
presence: &Presence,
pos: &Pos,
client: Option<u32>,
) -> Option<((Vec2<i16>, i32), Entity, bool)> {
let is_client = client.is_some();
let pos = pos.0;
let vd = presence.terrain_view_distance.current();
// NOTE: We use regular as casts rather than as_ because we want to saturate on
// overflow.
let player_pos = pos.map(|x| x as i32);
let player_chunk_pos = TerrainGrid::chunk_key(player_pos);
let player_vd = convert_to_loaded_vd(vd, max_view_distance);
// We filter out positions that are *clearly* way out of range from
// consideration. This is pretty easy to do, and means we don't have to
// perform expensive overflow checks elsewhere (otherwise, a player
// sufficiently far off the map could cause chunks they were nowhere near to
// stay loaded, parallel universes style).
//
// One could also imagine snapping a player to the part of the map nearest to
// them. We don't currently do this in case we rely elsewhere on players
// always being near the chunks they're keeping loaded, but it would allow
// us to use u32 exclusively so it's tempting.
let player_aabr_in_chunks = Aabr {
min: player_chunk_pos - player_vd,
max: player_chunk_pos + player_vd,
};
(world_aabr_in_chunks.max.x >= player_aabr_in_chunks.min.x &&
world_aabr_in_chunks.min.x <= player_aabr_in_chunks.max.x &&
world_aabr_in_chunks.max.y >= player_aabr_in_chunks.min.y &&
world_aabr_in_chunks.min.y <= player_aabr_in_chunks.max.y)
// The cast to i32 here is definitely safe thanks to MAX_VD limiting us to fit
// within i32^2.
//
// The cast from each coordinate to i16 should also be correct here. This is because valid
// world chunk coordinates are no greater than 1 << 14 - 1; since we verified that the
// player is within world bounds modulo player_vd, which is guaranteed to never let us
// overflow an i16 when added to a u14, safety of the cast follows.
.then(|| ((player_chunk_pos.as_::<i16>(), player_vd.pow(2)), entity, is_client))
}
pub fn prepare_player_presences<'a, P>(
world_size: Vec2<u32>,
max_view_distance: u32,
entities: &Entities<'a>,
positions: P,
presences: &ReadStorage<'a, Presence>,
clients: &ReadStorage<'a, Client>,
) -> (Vec<((Vec2<i16>, i32), Entity)>, Vec<(Vec2<i16>, i32)>)
where
P: GenericReadStorage<Component = Pos> + Join<Type = &'a Pos>,
{
// We start by collecting presences and positions from players, because they are
// very sparse in the entity list and therefore iterating over them for each
// chunk can be quite slow.
let world_aabr_in_chunks = Aabr {
min: Vec2::zero(),
// NOTE: Cast is correct because chunk coordinates must fit in an i32 (actually, i16).
max: world_size.map(|x| x.saturating_sub(1)).as_::<i32>(),
};
let (mut presences_positions_entities, mut presences_positions): (Vec<_>, Vec<_>) =
(entities, presences, positions, clients.mask().maybe())
.join()
.filter_map(|(entity, presence, position, client)| {
prepare_for_vd_check(
&world_aabr_in_chunks,
max_view_distance,
entity,
presence,
position,
client,
)
})
.partition_map(|(player_data, entity, is_client)| {
// For chunks with clients, we need to record their entity, because they might
// be used for insertion. These elements fit in 8 bytes, so
// this should be pretty cache-friendly.
if is_client {
Either::Left((player_data, entity))
} else {
// For chunks without clients, we only need to record the position and view
// distance. These elements fit in 4 bytes, which is even cache-friendlier.
Either::Right(player_data)
}
});
// We sort the presence lists by X position, so we can efficiently filter out
// players nowhere near the chunk. This is basically a poor substitute for
// the effects of a proper KDTree, but a proper KDTree has too much overhead
// to be worth using for such a short list (~ 1000 players at most). We
// also sort by y and reverse view distance; this will become important later.
presences_positions_entities
.sort_unstable_by_key(|&((pos, vd2), _)| (pos.x, pos.y, Reverse(vd2)));
presences_positions.sort_unstable_by_key(|&(pos, vd2)| (pos.x, pos.y, Reverse(vd2)));
// For the vast majority of chunks (present and pending ones), we'll only ever
// need the position and view distance. So we extend it with these from the
// list of client chunks, and then do some further work to improve
// performance (taking advantage of the fact that they don't require
// entities).
presences_positions.extend(
presences_positions_entities
.iter()
.map(|&(player_data, _)| player_data),
);
// Since both lists were previously sorted, we use stable sort over unstable
// sort, as it's faster in that case (theoretically a proper merge operation
// would be ideal, but it's not worth pulling in a library for).
presences_positions.sort_by_key(|&(pos, vd2)| (pos.x, pos.y, Reverse(vd2)));
// Now that the list is sorted, we deduplicate players in the same chunk (this
// is why we need to sort y as well as x; dedup only works if the list is
// sorted by the element we use to dedup). Importantly, we can then use
// only the *first* element as a substitute for all the players in the
// chunk, because we *also* sorted from greatest to lowest view
// distance, and dedup_by removes all but the first matching element. In the
// common case where a few chunks are very crowded, this further reduces the
// work required per chunk.
presences_positions.dedup_by_key(|&mut (pos, _)| pos);
(presences_positions_entities, presences_positions)
}
pub fn chunk_in_vd(player_chunk_pos: Vec2<i16>, player_vd_sqr: i32, chunk_pos: Vec2<i32>) -> bool {
// NOTE: Guaranteed in bounds as long as prepare_player_presences prepared the
// player_chunk_pos and player_vd_sqr.
let adjusted_dist_sqr = (player_chunk_pos.as_::<i32>() - chunk_pos).magnitude_squared();
adjusted_dist_sqr <= player_vd_sqr
}