1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
use super::super::{Bound, Consts, GlobalsLayouts, Quad, Texture, Tri, Vertex as VertexTrait};
use bytemuck::{Pod, Zeroable};
use std::mem;
use vek::*;
/// The format of textures that the UI sources image data from.
///
/// Note, the is not directly used in all relevant locations, but still helps to
/// more clearly document the that this is the format being used. Notably,
/// textures are created via `renderer.create_dynamic_texture(...)` and
/// `renderer.create_texture(&DynamicImage::ImageRgba(image), ...)` (TODO:
/// update if we have to refactor when implementing the RENDER_ATTACHMENT
/// usage).
const UI_IMAGE_FORMAT: wgpu::TextureFormat = wgpu::TextureFormat::Rgba8UnormSrgb;
#[repr(C)]
#[derive(Copy, Clone, Debug, Zeroable, Pod)]
pub struct Vertex {
pos: [f32; 2],
uv: [f32; 2],
color: [f32; 4],
center: [f32; 2],
// Used calculating where to sample scaled images.
scale: [f32; 2],
mode: u32,
}
impl Vertex {
fn desc<'a>() -> wgpu::VertexBufferLayout<'a> {
const ATTRIBUTES: [wgpu::VertexAttribute; 6] = wgpu::vertex_attr_array![
0 => Float32x2, 1 => Float32x2, 2 => Float32x4,
3 => Float32x2, 4 => Float32x2, 5 => Uint32,
];
wgpu::VertexBufferLayout {
array_stride: Self::STRIDE,
step_mode: wgpu::VertexStepMode::Vertex,
attributes: &ATTRIBUTES,
}
}
}
impl VertexTrait for Vertex {
const QUADS_INDEX: Option<wgpu::IndexFormat> = None;
const STRIDE: wgpu::BufferAddress = mem::size_of::<Self>() as wgpu::BufferAddress;
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Zeroable, Pod)]
pub struct Locals {
pos: [f32; 4],
}
impl From<Vec4<f32>> for Locals {
fn from(pos: Vec4<f32>) -> Self {
Self {
pos: pos.into_array(),
}
}
}
impl Default for Locals {
fn default() -> Self { Self { pos: [0.0; 4] } }
}
#[repr(C)]
#[derive(Copy, Clone, Debug, Zeroable, Pod)]
pub struct TexLocals {
texture_size: [u32; 2],
}
impl From<Vec2<u32>> for TexLocals {
fn from(texture_size: Vec2<u32>) -> Self {
Self {
texture_size: texture_size.into_array(),
}
}
}
/// Draw text from the text cache texture `tex` in the fragment shader.
pub const MODE_TEXT: u32 = 0;
/// Draw an image from the texture at `tex` in the fragment shader.
pub const MODE_IMAGE: u32 = 1;
/// Ignore `tex` and draw simple, colored 2D geometry.
pub const MODE_GEOMETRY: u32 = 2;
/// Draw an image from the texture at `tex` in the fragment shader, with the
/// source rectangle rotated to face north.
///
/// FIXME: Make more principled.
pub const MODE_IMAGE_SOURCE_NORTH: u32 = 3;
/// Draw an image from the texture at `tex` in the fragment shader, with the
/// target rectangle rotated to face north.
///
/// FIXME: Make more principled.
pub const MODE_IMAGE_TARGET_NORTH: u32 = 5;
#[derive(Clone, Copy)]
pub enum Mode {
Text,
Image {
scale: Vec2<f32>,
},
Geometry,
/// Draw an image from the texture at `tex` in the fragment shader, with the
/// source rectangle rotated to face north (TODO: detail on what "north"
/// means here).
ImageSourceNorth {
scale: Vec2<f32>,
},
/// Draw an image from the texture at `tex` in the fragment shader, with the
/// target rectangle rotated to face north. (TODO: detail on what "target"
/// means)
ImageTargetNorth {
scale: Vec2<f32>,
},
}
impl Mode {
fn value(self) -> u32 {
match self {
Mode::Text => MODE_TEXT,
Mode::Image { .. } => MODE_IMAGE,
Mode::Geometry => MODE_GEOMETRY,
Mode::ImageSourceNorth { .. } => MODE_IMAGE_SOURCE_NORTH,
Mode::ImageTargetNorth { .. } => MODE_IMAGE_TARGET_NORTH,
}
}
/// Gets the scaling of the displayed image compared to the source.
fn scale(self) -> Vec2<f32> {
match self {
Mode::ImageSourceNorth { scale } | Mode::ImageTargetNorth { scale } => scale,
Mode::Image { scale } => scale,
Mode::Text | Mode::Geometry => Vec2::one(),
}
}
}
pub type BoundLocals = Bound<Consts<Locals>>;
pub struct TextureBindGroup {
pub(in super::super) bind_group: wgpu::BindGroup,
}
pub struct UiLayout {
locals: wgpu::BindGroupLayout,
texture: wgpu::BindGroupLayout,
}
impl UiLayout {
pub fn new(device: &wgpu::Device) -> Self {
Self {
locals: device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
entries: &[
// locals
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
}),
texture: device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
entries: &[
// texture
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Float { filterable: true },
view_dimension: wgpu::TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Sampler(wgpu::SamplerBindingType::Filtering),
count: None,
},
// tex_locals
wgpu::BindGroupLayoutEntry {
binding: 2,
visibility: wgpu::ShaderStages::VERTEX_FRAGMENT,
ty: wgpu::BindingType::Buffer {
ty: wgpu::BufferBindingType::Uniform,
has_dynamic_offset: false,
min_binding_size: None,
},
count: None,
},
],
}),
}
}
pub fn bind_locals(&self, device: &wgpu::Device, locals: Consts<Locals>) -> BoundLocals {
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &self.locals,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: locals.buf().as_entire_binding(),
}],
});
BoundLocals {
bind_group,
with: locals,
}
}
pub fn bind_texture(
&self,
device: &wgpu::Device,
texture: &Texture,
tex_locals: Consts<TexLocals>,
) -> TextureBindGroup {
let bind_group = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &self.texture,
entries: &[
wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&texture.view),
},
wgpu::BindGroupEntry {
binding: 1,
resource: wgpu::BindingResource::Sampler(&texture.sampler),
},
wgpu::BindGroupEntry {
binding: 2,
resource: tex_locals.buf().as_entire_binding(),
},
],
});
TextureBindGroup { bind_group }
}
}
pub struct UiPipeline {
pub pipeline: wgpu::RenderPipeline,
}
impl UiPipeline {
pub fn new(
device: &wgpu::Device,
vs_module: &wgpu::ShaderModule,
fs_module: &wgpu::ShaderModule,
surface_config: &wgpu::SurfaceConfiguration,
global_layout: &GlobalsLayouts,
layout: &UiLayout,
) -> Self {
let render_pipeline_layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Ui pipeline layout"),
push_constant_ranges: &[],
bind_group_layouts: &[&global_layout.globals, &layout.locals, &layout.texture],
});
let render_pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("UI pipeline"),
layout: Some(&render_pipeline_layout),
vertex: wgpu::VertexState {
module: vs_module,
entry_point: "main",
buffers: &[Vertex::desc()],
},
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
unclipped_depth: false,
polygon_mode: wgpu::PolygonMode::Fill,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState {
count: 1,
mask: !0,
alpha_to_coverage_enabled: false,
},
fragment: Some(wgpu::FragmentState {
module: fs_module,
entry_point: "main",
targets: &[Some(wgpu::ColorTargetState {
format: surface_config.format,
blend: Some(wgpu::BlendState {
color: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha: wgpu::BlendComponent {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::One,
operation: wgpu::BlendOperation::Add,
},
}),
write_mask: wgpu::ColorWrites::ALL,
})],
}),
multiview: None,
});
Self {
pipeline: render_pipeline,
}
}
}
pub fn create_quad(
rect: Aabr<f32>,
uv_rect: Aabr<f32>,
color: Rgba<f32>,
mode: Mode,
) -> Quad<Vertex> {
create_quad_vert_gradient(rect, uv_rect, color, color, mode)
}
pub fn create_quad_vert_gradient(
rect: Aabr<f32>,
uv_rect: Aabr<f32>,
top_color: Rgba<f32>,
bottom_color: Rgba<f32>,
mode: Mode,
) -> Quad<Vertex> {
let top_color = top_color.into_array();
let bottom_color = bottom_color.into_array();
let center = if let Mode::ImageSourceNorth { .. } = mode {
uv_rect.center().into_array()
} else {
rect.center().into_array()
};
let scale = mode.scale().into_array();
let mode_val = mode.value();
let v = |pos, uv, color| Vertex {
pos,
uv,
center,
color,
scale,
mode: mode_val,
};
let aabr_to_lbrt = |aabr: Aabr<f32>| (aabr.min.x, aabr.min.y, aabr.max.x, aabr.max.y);
let (l, b, r, t) = aabr_to_lbrt(rect);
let (uv_l, uv_b, uv_r, uv_t) = aabr_to_lbrt(uv_rect);
match (uv_b > uv_t, uv_l > uv_r) {
(true, true) => Quad::new(
v([r, t], [uv_l, uv_b], top_color),
v([l, t], [uv_l, uv_t], top_color),
v([l, b], [uv_r, uv_t], bottom_color),
v([r, b], [uv_r, uv_b], bottom_color),
),
(false, false) => Quad::new(
v([r, t], [uv_l, uv_b], top_color),
v([l, t], [uv_l, uv_t], top_color),
v([l, b], [uv_r, uv_t], bottom_color),
v([r, b], [uv_r, uv_b], bottom_color),
),
_ => Quad::new(
v([r, t], [uv_r, uv_t], top_color),
v([l, t], [uv_l, uv_t], top_color),
v([l, b], [uv_l, uv_b], bottom_color),
v([r, b], [uv_r, uv_b], bottom_color),
),
}
}
pub fn create_tri(
tri: [[f32; 2]; 3],
uv_tri: [[f32; 2]; 3],
color: Rgba<f32>,
mode: Mode,
) -> Tri<Vertex> {
let center = [0.0, 0.0];
let scale = mode.scale().into_array();
let mode_val = mode.value();
let v = |pos, uv| Vertex {
pos,
uv,
center,
color: color.into_array(),
scale,
mode: mode_val,
};
Tri::new(
v([tri[0][0], tri[0][1]], [uv_tri[0][0], uv_tri[0][1]]),
v([tri[1][0], tri[1][1]], [uv_tri[1][0], uv_tri[1][1]]),
v([tri[2][0], tri[2][1]], [uv_tri[2][0], uv_tri[2][1]]),
)
}
// Premultiplying alpha on the GPU before placing images into the textures that
// will be sampled from in the UI pipeline.
//
// Steps:
//
// 1. Upload new image via `Device::create_texture_with_data`.
//
// (NOTE: Initially considered: Creating a storage buffer to read from in the
// shader via `Device::create_buffer_init`, with `MAP_WRITE` flag to avoid
// staging buffer. However, with GPUs combining usages other than `COPY_SRC`
// with `MAP_WRITE` may be less ideal. Plus, by copying into a texture first
// we can get free srgb conversion when fetching colors from the texture. In
// the future, we may want to branch based on the whether the GPU is
// integrated and avoid this extra copy.)
//
// 2. Run render pipeline to multiply by alpha reading from this texture and
// writing to the final texture (this can either be in an atlas or in an
// independent texture if the image is over a certain size threshold).
//
// (NOTE: Initially considered: using a compute pipeline and writing to the
// final texture as a storage texture. However, the srgb format can't be
// used with storage texture and there is not yet the capability to create
// non-srgb views of srgb textures.)
//
// Info needed:
//
// * source texture (texture binding)
// * target texture (render attachment)
// * source image dimensions (push constant)
// * target texture dimensions (push constant)
// * position in the target texture (push constant)
//
// TODO: potential optimizations
// * what is the overhead of this draw call call? at some point we may be better
// off converting very small images on the cpu and/or batching these into a
// single draw call
// * what is the overhead of creating new small textures? for processing many
// small images would it be useful to create a single texture the same size as
// our cache texture and use Queue::write_texture?
// * is using create_buffer_init and reading directly from that (with manual
// srgb conversion) worth avoiding staging buffer/copy-to-texture for
// integrated GPUs?
// * premultipying alpha in a release asset preparation step
pub struct PremultiplyAlphaLayout {
source_texture: wgpu::BindGroupLayout,
}
impl PremultiplyAlphaLayout {
pub fn new(device: &wgpu::Device) -> Self {
Self {
source_texture: device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
entries: &[
// source_texture
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStages::FRAGMENT,
ty: wgpu::BindingType::Texture {
sample_type: wgpu::TextureSampleType::Float { filterable: false },
view_dimension: wgpu::TextureViewDimension::D2,
multisampled: false,
},
count: None,
},
],
}),
}
}
}
pub struct PremultiplyAlphaPipeline {
pub pipeline: wgpu::RenderPipeline,
}
impl PremultiplyAlphaPipeline {
pub fn new(
device: &wgpu::Device,
vs_module: &wgpu::ShaderModule,
fs_module: &wgpu::ShaderModule,
layout: &PremultiplyAlphaLayout,
) -> Self {
let pipeline_layout = device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
label: Some("Premultiply alpha pipeline layout"),
bind_group_layouts: &[&layout.source_texture],
push_constant_ranges: &[wgpu::PushConstantRange {
stages: wgpu::ShaderStages::VERTEX,
range: 0..core::mem::size_of::<PremultiplyAlphaParams>() as u32,
}],
});
let pipeline = device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
label: Some("Premultiply alpha pipeline"),
layout: Some(&pipeline_layout),
vertex: wgpu::VertexState {
module: vs_module,
entry_point: "main",
buffers: &[],
},
primitive: wgpu::PrimitiveState {
topology: wgpu::PrimitiveTopology::TriangleList,
strip_index_format: None,
front_face: wgpu::FrontFace::Ccw,
cull_mode: Some(wgpu::Face::Back),
unclipped_depth: false,
polygon_mode: wgpu::PolygonMode::Fill,
conservative: false,
},
depth_stencil: None,
multisample: wgpu::MultisampleState::default(),
fragment: Some(wgpu::FragmentState {
module: fs_module,
entry_point: "main",
targets: &[Some(wgpu::ColorTargetState {
format: UI_IMAGE_FORMAT,
blend: None,
write_mask: wgpu::ColorWrites::ALL,
})],
}),
multiview: None,
});
Self { pipeline }
}
}
/// Uploaded as push constant.
#[repr(C)]
#[derive(Copy, Clone, Debug, Zeroable, Pod)]
pub struct PremultiplyAlphaParams {
/// Size of the source image.
source_size_xy: u32,
/// Offset to place the image at in the target texture.
///
/// Origin is the top-left.
target_offset_xy: u32,
/// Size of the target texture.
target_size_xy: u32,
}
/// An image upload that needs alpha premultiplication and which is in a pending
/// state.
///
/// From here we will use the `PremultiplyAlpha` pipeline to premultiply the
/// alpha while transfering the image to its destination texture.
pub(in super::super) struct PremultiplyUpload {
source_bg: wgpu::BindGroup,
source_size_xy: u32,
/// The location in the final texture this will be placed at. Technically,
/// we don't need this information at this point but it is convenient to
/// store it here.
offset: Vec2<u16>,
}
impl PremultiplyUpload {
pub(in super::super) fn prepare(
device: &wgpu::Device,
queue: &wgpu::Queue,
layout: &PremultiplyAlphaLayout,
image: &image::RgbaImage,
offset: Vec2<u16>,
) -> Self {
// TODO: duplicating some code from `Texture` since:
// 1. We don't need to create a sampler.
// 2. Texture::new accepts &DynamicImage which isn't possible to create from
// &RgbaImage without cloning. (this might be addressed on zoomy worldgen
// branch)
let image_size = wgpu::Extent3d {
width: image.width(),
height: image.height(),
depth_or_array_layers: 1,
};
let source_tex = device.create_texture(&wgpu::TextureDescriptor {
label: None,
size: image_size,
mip_level_count: 1,
sample_count: 1,
dimension: wgpu::TextureDimension::D2,
format: wgpu::TextureFormat::Rgba8UnormSrgb,
usage: wgpu::TextureUsages::TEXTURE_BINDING | wgpu::TextureUsages::COPY_DST,
view_formats: &[],
});
queue.write_texture(
wgpu::ImageCopyTexture {
texture: &source_tex,
mip_level: 0,
origin: wgpu::Origin3d::ZERO,
aspect: wgpu::TextureAspect::All,
},
&(&**image)[..(image.width() as usize * image.height() as usize * 4)],
wgpu::ImageDataLayout {
offset: 0,
bytes_per_row: Some(image.width() * 4),
rows_per_image: Some(image.height()),
},
image_size,
);
// Create view to use to create bind group
let view = source_tex.create_view(&wgpu::TextureViewDescriptor {
label: None,
format: Some(wgpu::TextureFormat::Rgba8UnormSrgb),
dimension: Some(wgpu::TextureViewDimension::D2),
aspect: wgpu::TextureAspect::All,
base_mip_level: 0,
mip_level_count: None,
base_array_layer: 0,
array_layer_count: None,
});
let source_bg = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &layout.source_texture,
entries: &[wgpu::BindGroupEntry {
binding: 0,
resource: wgpu::BindingResource::TextureView(&view),
}],
});
// NOTE: We assume the max texture size is less than u16::MAX.
let source_size_xy = image_size.width + (image_size.height << 16);
Self {
source_bg,
source_size_xy,
offset,
}
}
/// Semantically, this consumes the `PremultiplyUpload` but we need to keep
/// the bind group alive to the end of the render pass and don't want to
/// bother storing it somewhere else.
pub(in super::super) fn draw_data(
&self,
target: &Texture,
) -> (&wgpu::BindGroup, PremultiplyAlphaParams) {
let target_offset_xy = u32::from(self.offset.x) + (u32::from(self.offset.y) << 16);
let target_dims = target.get_dimensions();
// NOTE: We assume the max texture size is less than u16::MAX.
let target_size_xy = target_dims.x + (target_dims.y << 16);
(&self.source_bg, PremultiplyAlphaParams {
source_size_xy: self.source_size_xy,
target_offset_xy,
target_size_xy,
})
}
}
use std::sync::Arc;
/// Per-target texture batched uploads
#[derive(Default)]
pub(in super::super) struct BatchedUploads {
batches: Vec<(Arc<Texture>, Vec<PremultiplyUpload>)>,
}
#[derive(Default, Clone, Copy)]
pub struct UploadBatchId(usize);
impl BatchedUploads {
/// Adds the provided upload to the batch indicated by the provided target
/// texture and optional batch id. A new batch will be created if the batch
/// id is invalid (doesn't refer to an existing batch) or the provided
/// target texture isn't the same as the one associated with the
/// provided batch id. Creating a new batch involves cloning the
/// provided texture `Arc`.
///
/// The id of the batch where the upload is ultimately submitted will be
/// returned. This id can be used in subsequent calls to add items to
/// the same batch (i.e. uploads for the same texture).
///
/// Batch ids will reset every frame, however since we check that the
/// texture matches, it is perfectly fine to use a stale id (just keep
/// in mind that this will create a new batch). This also means that it is
/// sufficient to use `UploadBatchId::default()` when calling this with
/// new textures.
pub(in super::super) fn submit(
&mut self,
target_texture: &Arc<Texture>,
batch_id: UploadBatchId,
upload: PremultiplyUpload,
) -> UploadBatchId {
if let Some(batch) = self
.batches
.get_mut(batch_id.0)
.filter(|b| Arc::ptr_eq(&b.0, target_texture))
{
batch.1.push(upload);
batch_id
} else {
let new_batch_id = UploadBatchId(self.batches.len());
self.batches
.push((Arc::clone(target_texture), vec![upload]));
new_batch_id
}
}
pub(in super::super) fn take(&mut self) -> Vec<(Arc<Texture>, Vec<PremultiplyUpload>)> {
core::mem::take(&mut self.batches)
}
}