1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
pub mod camera;
pub mod debug;
pub mod figure;
pub mod lod;
pub mod math;
pub mod particle;
pub mod simple;
pub mod smoke_cycle;
pub mod terrain;
pub mod tether;
pub mod trail;
pub use self::{
camera::{Camera, CameraMode},
debug::{Debug, DebugShape, DebugShapeId},
figure::FigureMgr,
lod::Lod,
particle::ParticleMgr,
terrain::{SpriteRenderContextLazy, Terrain},
tether::TetherMgr,
trail::TrailMgr,
};
use crate::{
audio::{ambience, ambience::AmbienceMgr, music::MusicMgr, sfx::SfxMgr, AudioFrontend},
render::{
create_skybox_mesh, CloudsLocals, Consts, CullingMode, Drawer, GlobalModel, Globals,
GlobalsBindGroup, Light, Model, PointLightMatrix, PostProcessLocals, RainOcclusionLocals,
Renderer, Shadow, ShadowLocals, SkyboxVertex,
},
session::PlayerDebugLines,
settings::Settings,
window::{AnalogGameInput, Event},
};
use client::Client;
use common::{
calendar::Calendar,
comp::{
self, item::ItemDesc, ship::figuredata::VOXEL_COLLIDER_MANIFEST, slot::EquipSlot,
tool::ToolKind,
},
outcome::Outcome,
resources::{DeltaTime, TimeOfDay, TimeScale},
terrain::{BlockKind, TerrainChunk, TerrainGrid},
vol::ReadVol,
weather::WeatherGrid,
};
use common_base::{prof_span, span};
use common_state::State;
use comp::item::Reagent;
use hashbrown::HashMap;
use num::traits::{Float, FloatConst};
use specs::{Entity as EcsEntity, Join, LendJoin, WorldExt};
use vek::*;
const ZOOM_CAP_PLAYER: f32 = 1000.0;
const ZOOM_CAP_ADMIN: f32 = 100000.0;
// TODO: Don't hard-code this.
const CURSOR_PAN_SCALE: f32 = 0.005;
pub(crate) const MAX_LIGHT_COUNT: usize = 20; // 31 (total shadow_mats is limited to 128 with default max_uniform_buffer_binding_size)
pub(crate) const MAX_SHADOW_COUNT: usize = 24;
pub(crate) const MAX_POINT_LIGHT_MATRICES_COUNT: usize = MAX_LIGHT_COUNT * 6 + 6;
const NUM_DIRECTED_LIGHTS: usize = 1;
const LIGHT_DIST_RADIUS: f32 = 64.0; // The distance beyond which lights may not emit light from their origin
const SHADOW_DIST_RADIUS: f32 = 8.0;
const SHADOW_MAX_DIST: f32 = 96.0; // The distance beyond which shadows may not be visible
/// The minimum sin γ we will use before switching to uniform mapping.
const EPSILON_UPSILON: f64 = -1.0;
const SHADOW_NEAR: f32 = 0.25; // Near plane for shadow map point light rendering.
const SHADOW_FAR: f32 = 128.0; // Far plane for shadow map point light rendering.
/// Above this speed is considered running
/// Used for first person camera effects
const RUNNING_THRESHOLD: f32 = 0.7;
/// The threashold for starting calculations with rain.
const RAIN_THRESHOLD: f32 = 0.0;
/// is_daylight, array of active lights.
pub type LightData<'a> = (bool, &'a [Light]);
struct EventLight {
light: Light,
timeout: f32,
fadeout: fn(f32) -> f32,
}
struct Skybox {
model: Model<SkyboxVertex>,
}
pub struct Scene {
data: GlobalModel,
globals_bind_group: GlobalsBindGroup,
camera: Camera,
camera_input_state: Vec2<f32>,
event_lights: Vec<EventLight>,
skybox: Skybox,
terrain: Terrain<TerrainChunk>,
pub debug: Debug,
pub lod: Lod,
loaded_distance: f32,
/// x coordinate is sea level (minimum height for any land chunk), and y
/// coordinate is the maximum height above the mnimimum for any land
/// chunk.
map_bounds: Vec2<f32>,
select_pos: Option<Vec3<i32>>,
light_data: Vec<Light>,
particle_mgr: ParticleMgr,
trail_mgr: TrailMgr,
figure_mgr: FigureMgr,
tether_mgr: TetherMgr,
pub sfx_mgr: SfxMgr,
pub music_mgr: MusicMgr,
ambience_mgr: AmbienceMgr,
integrated_rain_vel: f32,
wind_vel: Vec2<f32>,
pub interpolated_time_of_day: Option<f64>,
last_lightning: Option<(Vec3<f32>, f64)>,
local_time: f64,
pub debug_vectors_enabled: bool,
}
pub struct SceneData<'a> {
pub client: &'a Client,
pub state: &'a State,
pub viewpoint_entity: specs::Entity,
pub mutable_viewpoint: bool,
pub target_entity: Option<specs::Entity>,
pub loaded_distance: f32,
pub terrain_view_distance: u32, // not used currently
pub entity_view_distance: u32,
pub tick: u64,
pub gamma: f32,
pub exposure: f32,
pub ambiance: f32,
pub mouse_smoothing: bool,
pub sprite_render_distance: f32,
pub particles_enabled: bool,
pub weapon_trails_enabled: bool,
pub flashing_lights_enabled: bool,
pub figure_lod_render_distance: f32,
pub is_aiming: bool,
pub interpolated_time_of_day: Option<f64>,
}
impl<'a> SceneData<'a> {
pub fn get_sun_dir(&self) -> Vec3<f32> {
TimeOfDay::new(self.interpolated_time_of_day.unwrap_or(0.0)).get_sun_dir()
}
pub fn get_moon_dir(&self) -> Vec3<f32> {
TimeOfDay::new(self.interpolated_time_of_day.unwrap_or(0.0)).get_moon_dir()
}
}
/// Approximate a scalar field of view angle using the parameterization from
/// section 4.3 of Lloyd's thesis:
///
/// W_e = 2 n_e tan θ
///
/// where
///
/// W_e = 2 is the width of the image plane (for our projections, since they go
/// from -1 to 1) n_e = near_plane is the near plane for the view frustum
/// θ = (fov / 2) is the half-angle of the FOV (the one passed to
/// Mat4::projection_rh_zo).
///
/// Although the widths for the x and y image planes are the same, they are
/// different in this framework due to the introduction of an aspect ratio:
///
/// y'(p) = 1.0 / tan(fov / 2) * p.y / -p.z
/// x'(p) = 1.0 / (aspect * tan(fov / 2)) * p.x / -p.z
///
/// i.e.
///
/// y'(x, y, -near, w) = 1 / tan(fov / 2) p.y / near
/// x'(x, y, -near, w) = 1 / (aspect * tan(fov / 2)) p.x / near
///
/// W_e,y = 2 * near_plane * tan(fov / 2)
/// W_e,x = 2 * near_plane * aspect * W_e,y
///
/// Θ_x = atan(W_e_y / 2 / near_plane) = atanfov / t()
///
/// i.e. we have an "effective" W_e_x of
///
/// 2 = 2 * near_plane * tan Θ
///
/// atan(1 / near_plane) = θ
///
/// y'
/// x(-near)
/// W_e = 2 * near_plane *
///
/// W_e_y / n_e = tan (fov / 2)
/// W_e_x = 2 n
fn compute_scalar_fov<F: Float>(_near_plane: F, fov: F, aspect: F) -> F {
let two = F::one() + F::one();
let theta_y = fov / two;
let theta_x = (aspect * theta_y.tan()).atan();
theta_x.min(theta_y)
}
/// Compute a near-optimal warping parameter that helps minimize error in a
/// shadow map.
///
/// See section 5.2 of Brandon Lloyd's thesis:
///
/// [http://gamma.cs.unc.edu/papers/documents/dissertations/lloyd07.pdf](Logarithmic Perspective Shadow Maps).
///
/// η =
/// 0 γ < γ_a
/// -1 + (η_b + 1)(1 + cos(90 (γ - γ_a)/(γ_b - γ_a))) γ_a ≤ γ < γ_b
/// η_b + (η_c - η_b) sin(90 (γ - γ_b)/(γ_c - γ_b)) γ_b ≤ γ < γ_c
/// η_c γ_c ≤ γ
///
/// NOTE: Equation's described behavior is *wrong!* I have pieced together a
/// slightly different function that seems to more closely satisfy the author's
/// intent:
///
/// η =
/// -1 γ < γ_a
/// -1 + (η_b + 1) (γ - γ_a)/(γ_b - γ_a) γ_a ≤ γ < γ_b
/// η_b + (η_c - η_b) sin(90 (γ - γ_b)/(γ_c - γ_b)) γ_b ≤ γ < γ_c
/// η_c γ_c ≤ γ
///
/// There are other alternatives that may have more desirable properties, such
/// as:
///
/// η =
/// -1 γ < γ_a
/// -1 + (η_b + 1)(1 - cos(90 (γ - γ_a)/(γ_b - γ_a))) γ_a ≤ γ < γ_b
/// η_b + (η_c - η_b) sin(90 (γ - γ_b)/(γ_c - γ_b)) γ_b ≤ γ < γ_c
/// η_c γ_c ≤ γ
fn compute_warping_parameter<F: Float + FloatConst>(
gamma: F,
(gamma_a, gamma_b, gamma_c): (F, F, F),
(eta_b, eta_c): (F, F),
) -> F {
if gamma < gamma_a {
-F::one()
/* F::zero() */
} else if gamma_a <= gamma && gamma < gamma_b {
/* -F::one() + (eta_b + F::one()) * (F::one() + (F::FRAC_PI_2() * (gamma - gamma_a) / (gamma_b - gamma_a)).cos()) */
-F::one() + (eta_b + F::one()) * (F::one() - (F::FRAC_PI_2() * (gamma - gamma_a) / (gamma_b - gamma_a)).cos())
// -F::one() + (eta_b + F::one()) * ((gamma - gamma_a) / (gamma_b - gamma_a))
} else if gamma_b <= gamma && gamma < gamma_c {
eta_b + (eta_c - eta_b) * (F::FRAC_PI_2() * (gamma - gamma_b) / (gamma_c - gamma_b)).sin()
} else {
eta_c
}
// NOTE: Just in case we go out of range due to floating point imprecision.
.max(-F::one()).min(F::one())
}
/// Compute a near-optimal warping parameter that falls off quickly enough
/// when the warp angle goes past the minimum field of view angle, for
/// perspective projections.
///
/// For F_p (perspective warping) and view fov angle θ,the parameters are:
///
/// γ_a = θ / 3
/// γ_b = θ
/// γ_c = θ + 0.3(90 - θ)
///
/// η_b = -0.2
/// η_c = 0
///
/// See compute_warping_parameter.
fn compute_warping_parameter_perspective<F: Float + FloatConst>(
gamma: F,
near_plane: F,
fov: F,
aspect: F,
) -> F {
let theta = compute_scalar_fov(near_plane, fov, aspect);
let two = F::one() + F::one();
let three = two + F::one();
let ten = three + three + three + F::one();
compute_warping_parameter(
gamma,
(
theta / three,
theta,
theta + (three / ten) * (F::FRAC_PI_2() - theta),
),
(-two / ten, F::zero()),
)
}
impl Scene {
/// Create a new `Scene` with default parameters.
pub fn new(
renderer: &mut Renderer,
lazy_init: &mut SpriteRenderContextLazy,
client: &Client,
settings: &Settings,
) -> Self {
let resolution = renderer.resolution().map(|e| e as f32);
let sprite_render_context = lazy_init(renderer);
let data = GlobalModel {
globals: renderer.create_consts(&[Globals::default()]),
lights: renderer.create_consts(&[Light::default(); MAX_LIGHT_COUNT]),
shadows: renderer.create_consts(&[Shadow::default(); MAX_SHADOW_COUNT]),
shadow_mats: renderer.create_shadow_bound_locals(&[ShadowLocals::default()]),
rain_occlusion_mats: renderer
.create_rain_occlusion_bound_locals(&[RainOcclusionLocals::default()]),
point_light_matrices: Box::new(
[PointLightMatrix::default(); MAX_POINT_LIGHT_MATRICES_COUNT],
),
};
let lod = Lod::new(renderer, client, settings);
let globals_bind_group = renderer.bind_globals(&data, lod.get_data());
let terrain = Terrain::new(renderer, &data, lod.get_data(), sprite_render_context);
let camera_mode = match client.presence() {
Some(comp::PresenceKind::Spectator) => CameraMode::Freefly,
_ => CameraMode::ThirdPerson,
};
let calendar = client.state().ecs().read_resource::<Calendar>();
Self {
data,
globals_bind_group,
camera: Camera::new(resolution.x / resolution.y, camera_mode),
camera_input_state: Vec2::zero(),
event_lights: Vec::new(),
skybox: Skybox {
model: renderer.create_model(&create_skybox_mesh()).unwrap(),
},
terrain,
debug: Debug::new(),
lod,
loaded_distance: 0.0,
map_bounds: Vec2::new(
client.world_data().min_chunk_alt(),
client.world_data().max_chunk_alt(),
),
select_pos: None,
light_data: Vec::new(),
particle_mgr: ParticleMgr::new(renderer),
trail_mgr: TrailMgr::default(),
figure_mgr: FigureMgr::new(renderer),
tether_mgr: TetherMgr::new(renderer),
sfx_mgr: SfxMgr::default(),
music_mgr: MusicMgr::new(&calendar),
ambience_mgr: AmbienceMgr {
ambience: ambience::load_ambience_items(),
},
integrated_rain_vel: 0.0,
wind_vel: Vec2::zero(),
interpolated_time_of_day: None,
last_lightning: None,
local_time: 0.0,
debug_vectors_enabled: false,
}
}
/// Get a reference to the scene's globals.
pub fn globals(&self) -> &Consts<Globals> { &self.data.globals }
/// Get a reference to the scene's camera.
pub fn camera(&self) -> &Camera { &self.camera }
/// Get a reference to the scene's terrain.
pub fn terrain(&self) -> &Terrain<TerrainChunk> { &self.terrain }
/// Get a reference to the scene's lights.
pub fn lights(&self) -> &Vec<Light> { &self.light_data }
/// Get a reference to the scene's particle manager.
pub fn particle_mgr(&self) -> &ParticleMgr { &self.particle_mgr }
/// Get a reference to the scene's trail manager.
pub fn trail_mgr(&self) -> &TrailMgr { &self.trail_mgr }
/// Get a reference to the scene's figure manager.
pub fn figure_mgr(&self) -> &FigureMgr { &self.figure_mgr }
pub fn music_mgr(&self) -> &MusicMgr { &self.music_mgr }
/// Get a mutable reference to the scene's camera.
pub fn camera_mut(&mut self) -> &mut Camera { &mut self.camera }
/// Set the block position that the player is interacting with
pub fn set_select_pos(&mut self, pos: Option<Vec3<i32>>) { self.select_pos = pos; }
pub fn select_pos(&self) -> Option<Vec3<i32>> { self.select_pos }
/// Handle an incoming user input event (e.g.: cursor moved, key pressed,
/// window closed).
///
/// If the event is handled, return true.
pub fn handle_input_event(&mut self, event: Event, client: &Client) -> bool {
match event {
// When the window is resized, change the camera's aspect ratio
Event::Resize(dims) => {
self.camera.set_aspect_ratio(dims.x as f32 / dims.y as f32);
true
},
// Panning the cursor makes the camera rotate
Event::CursorPan(delta) => {
self.camera.rotate_by(Vec3::from(delta) * CURSOR_PAN_SCALE);
true
},
// Zoom the camera when a zoom event occurs
Event::Zoom(delta) => {
let cap = if client.is_moderator() {
ZOOM_CAP_ADMIN
} else {
ZOOM_CAP_PLAYER
};
// when zooming in the distance the camera travelles should be based on the
// final distance. This is to make sure the camera travelles the
// same distance when zooming in and out
let player_scale = client
.state()
.read_component_copied::<comp::Scale>(client.entity())
.map_or(1.0, |s| s.0);
if delta < 0.0 {
self.camera.zoom_switch(
// Thank you Imbris for doing the math
delta * (0.05 + self.camera.get_distance() * 0.01) / (1.0 - delta * 0.01),
cap,
player_scale,
);
} else {
self.camera.zoom_switch(
delta * (0.05 + self.camera.get_distance() * 0.01),
cap,
player_scale,
);
}
true
},
Event::AnalogGameInput(input) => match input {
AnalogGameInput::CameraX(d) => {
self.camera_input_state.x = d;
true
},
AnalogGameInput::CameraY(d) => {
self.camera_input_state.y = d;
true
},
_ => false,
},
// All other events are unhandled
_ => false,
}
}
pub fn handle_outcome(
&mut self,
outcome: &Outcome,
scene_data: &SceneData,
audio: &mut AudioFrontend,
) {
span!(_guard, "handle_outcome", "Scene::handle_outcome");
self.particle_mgr
.handle_outcome(outcome, scene_data, &self.figure_mgr);
self.sfx_mgr
.handle_outcome(outcome, audio, scene_data.client);
match outcome {
Outcome::Lightning { pos } => {
self.last_lightning = Some((*pos, scene_data.state.get_time()));
},
Outcome::Explosion {
pos,
power,
is_attack,
reagent,
..
} => self.event_lights.push(EventLight {
light: Light::new(
*pos,
match reagent {
Some(Reagent::Blue) => Rgb::new(0.15, 0.4, 1.0),
Some(Reagent::Green) => Rgb::new(0.0, 1.0, 0.0),
Some(Reagent::Purple) => Rgb::new(0.7, 0.0, 1.0),
Some(Reagent::Red) => {
if *is_attack {
Rgb::new(1.0, 0.5, 0.0)
} else {
Rgb::new(1.0, 0.0, 0.0)
}
},
Some(Reagent::Phoenix) => Rgb::new(1.0, 0.8, 0.3),
Some(Reagent::White) => Rgb::new(1.0, 1.0, 1.0),
Some(Reagent::Yellow) => Rgb::new(1.0, 1.0, 0.0),
None => Rgb::new(1.0, 0.5, 0.0),
},
power
* if *is_attack || reagent.is_none() {
2.5
} else {
5.0
},
),
timeout: match reagent {
Some(_) => 1.0,
None => 0.5,
},
fadeout: |timeout| timeout * 2.0,
}),
Outcome::ProjectileShot { .. } => {},
_ => {},
}
}
/// Maintain data such as GPU constant buffers, models, etc. To be called
/// once per tick.
pub fn maintain(
&mut self,
renderer: &mut Renderer,
audio: &mut AudioFrontend,
scene_data: &SceneData,
client: &Client,
settings: &Settings,
) {
span!(_guard, "maintain", "Scene::maintain");
// Get player position.
let ecs = scene_data.state.ecs();
let dt = ecs.fetch::<DeltaTime>().0;
self.local_time += dt as f64 * ecs.fetch::<TimeScale>().0;
let positions = ecs.read_storage::<comp::Pos>();
let viewpoint_pos = if let Some(viewpoint_pos) =
positions.get(scene_data.viewpoint_entity).map(|pos| pos.0)
{
let viewpoint_ori = ecs
.read_storage::<comp::Ori>()
.get(scene_data.viewpoint_entity)
.map_or(Quaternion::identity(), |ori| ori.to_quat());
let viewpoint_look_ori = ecs
.read_storage::<comp::CharacterActivity>()
.get(scene_data.viewpoint_entity)
.and_then(|activity| activity.look_dir)
.map(|dir| {
let d = dir.to_vec();
let pitch = (-d.z).asin();
let yaw = d.x.atan2(d.y);
Vec3::new(yaw, pitch, 0.0)
})
.unwrap_or_else(|| {
let q = viewpoint_ori;
let sinr_cosp = 2.0 * (q.w * q.x + q.y * q.z);
let cosr_cosp = 1.0 - 2.0 * (q.x * q.x + q.y * q.y);
let pitch = sinr_cosp.atan2(cosr_cosp);
let siny_cosp = 2.0 * (q.w * q.z + q.x * q.y);
let cosy_cosp = 1.0 - 2.0 * (q.y * q.y + q.z * q.z);
let yaw = siny_cosp.atan2(cosy_cosp);
Vec3::new(-yaw, -pitch, 0.0)
});
let viewpoint_scale = ecs
.read_storage::<comp::Scale>()
.get(scene_data.viewpoint_entity)
.map_or(1.0, |scale| scale.0);
let (is_humanoid, viewpoint_height, viewpoint_eye_height) = ecs
.read_storage::<comp::Body>()
.get(scene_data.viewpoint_entity)
.map_or((false, 1.0, 0.0), |b| {
(
matches!(b, comp::Body::Humanoid(_)),
b.height(),
b.eye_height(1.0), // Scale is applied later
)
});
if scene_data.mutable_viewpoint || matches!(self.camera.get_mode(), CameraMode::Freefly)
{
// Add the analog input to camera if it's a mutable viewpoint
self.camera
.rotate_by(Vec3::from([self.camera_input_state.x, 0.0, 0.0]));
self.camera
.rotate_by(Vec3::from([0.0, self.camera_input_state.y, 0.0]));
} else {
// Otherwise set the cameras rotation to the viewpoints
self.camera.set_orientation(viewpoint_look_ori);
}
let viewpoint_offset = if is_humanoid {
let viewpoint_rolling = ecs
.read_storage::<comp::CharacterState>()
.get(scene_data.viewpoint_entity)
.map_or(false, |cs| cs.is_dodge());
let is_running = ecs
.read_storage::<comp::Vel>()
.get(scene_data.viewpoint_entity)
.zip(
ecs.read_storage::<comp::PhysicsState>()
.get(scene_data.viewpoint_entity),
)
.map(|(v, ps)| {
(v.0 - ps.ground_vel).magnitude_squared() > RUNNING_THRESHOLD.powi(2)
})
.unwrap_or(false);
let on_ground = ecs
.read_storage::<comp::PhysicsState>()
.get(scene_data.viewpoint_entity)
.map(|p| p.on_ground.is_some());
let player_entity = client.entity();
let holding_ranged = client
.inventories()
.get(player_entity)
.and_then(|inv| inv.equipped(EquipSlot::ActiveMainhand))
.and_then(|item| item.tool_info())
.is_some_and(|tool_kind| {
matches!(
tool_kind,
ToolKind::Bow | ToolKind::Staff | ToolKind::Sceptre
)
});
let up = match self.camera.get_mode() {
CameraMode::FirstPerson => {
if viewpoint_rolling {
viewpoint_height * 0.42
} else if is_running && on_ground.unwrap_or(false) {
viewpoint_eye_height
+ (scene_data.state.get_time() as f32 * 17.0).sin() * 0.05
} else {
viewpoint_eye_height
}
},
CameraMode::ThirdPerson if scene_data.is_aiming && holding_ranged => {
viewpoint_height * 1.16 + settings.gameplay.aim_offset_y
},
CameraMode::ThirdPerson if scene_data.is_aiming => viewpoint_height * 1.16,
CameraMode::ThirdPerson => viewpoint_eye_height,
CameraMode::Freefly => 0.0,
};
let right = match self.camera.get_mode() {
CameraMode::FirstPerson => 0.0,
CameraMode::ThirdPerson if scene_data.is_aiming && holding_ranged => {
settings.gameplay.aim_offset_x
},
CameraMode::ThirdPerson => 0.0,
CameraMode::Freefly => 0.0,
};
// Alter camera position to match player.
let tilt = self.camera.get_orientation().y;
let dist = self.camera.get_distance();
Vec3::unit_z() * (up * viewpoint_scale - tilt.min(0.0).sin() * dist * 0.6)
+ self.camera.right() * (right * viewpoint_scale)
} else {
self.figure_mgr
.viewpoint_offset(scene_data, scene_data.viewpoint_entity)
};
match self.camera.get_mode() {
CameraMode::FirstPerson | CameraMode::ThirdPerson => {
self.camera.set_focus_pos(viewpoint_pos + viewpoint_offset);
},
CameraMode::Freefly => {},
};
// Tick camera for interpolation.
self.camera
.update(scene_data.state.get_time(), dt, scene_data.mouse_smoothing);
viewpoint_pos
} else {
Vec3::zero()
};
// Compute camera matrices.
self.camera.compute_dependents(&scene_data.state.terrain());
let camera::Dependents {
view_mat,
view_mat_inv,
proj_mat,
proj_mat_inv,
cam_pos,
..
} = self.camera.dependents();
// Update chunk loaded distance smoothly for nice shader fog
let loaded_distance =
(0.98 * self.loaded_distance + 0.02 * scene_data.loaded_distance).max(0.01);
// Reset lights ready for the next tick
let lights = &mut self.light_data;
lights.clear();
// Maintain the particles.
self.particle_mgr.maintain(
renderer,
scene_data,
&self.terrain,
&self.figure_mgr,
lights,
);
// Maintain the trails.
self.trail_mgr.maintain(renderer, scene_data);
// Update light constants
let max_light_dist = loaded_distance.powi(2) + LIGHT_DIST_RADIUS;
lights.extend(
(
&scene_data.state.ecs().read_storage::<comp::Pos>(),
scene_data
.state
.ecs()
.read_storage::<crate::ecs::comp::Interpolated>()
.maybe(),
&scene_data
.state
.ecs()
.read_storage::<comp::LightAnimation>(),
scene_data
.state
.ecs()
.read_storage::<comp::Health>()
.maybe(),
)
.join()
.filter(|(pos, _, light_anim, h)| {
light_anim.col != Rgb::zero()
&& light_anim.strength > 0.0
&& pos.0.distance_squared(viewpoint_pos) < max_light_dist
&& h.map_or(true, |h| !h.is_dead)
})
.map(|(pos, interpolated, light_anim, _)| {
// Use interpolated values if they are available
let pos = interpolated.map_or(pos.0, |i| i.pos);
Light::new(pos + light_anim.offset, light_anim.col, light_anim.strength)
})
.chain(
self.event_lights
.iter()
.map(|el| el.light.with_strength((el.fadeout)(el.timeout))),
),
);
let voxel_colliders_manifest = VOXEL_COLLIDER_MANIFEST.read();
let figure_mgr = &self.figure_mgr;
lights.extend(
(
&scene_data.state.ecs().entities(),
&scene_data
.state
.read_storage::<crate::ecs::comp::Interpolated>(),
&scene_data.state.read_storage::<comp::Body>(),
&scene_data.state.read_storage::<comp::Collider>(),
)
.join()
.filter_map(|(entity, interpolated, body, collider)| {
let vol = collider.get_vol(&voxel_colliders_manifest)?;
let (blocks_of_interest, offset) =
figure_mgr.get_blocks_of_interest(entity, body, Some(collider))?;
let mat = Mat4::from(interpolated.ori.to_quat())
.translated_3d(interpolated.pos)
* Mat4::translation_3d(offset);
let p = mat.inverted().mul_point(viewpoint_pos);
let aabb = Aabb {
min: Vec3::zero(),
max: vol.volume().sz.as_(),
};
if aabb.contains_point(p) || aabb.distance_to_point(p) < max_light_dist {
Some(
blocks_of_interest
.lights
.iter()
.map(move |(block_offset, level)| {
let wpos = mat.mul_point(block_offset.as_() + 0.5);
(wpos, level)
})
.filter(move |(wpos, _)| {
wpos.distance_squared(viewpoint_pos) < max_light_dist
})
.map(|(wpos, level)| {
Light::new(wpos, Rgb::white(), *level as f32 / 7.0)
}),
)
} else {
None
}
})
.flatten(),
);
lights.sort_by_key(|light| light.get_pos().distance_squared(viewpoint_pos) as i32);
lights.truncate(MAX_LIGHT_COUNT);
renderer.update_consts(&mut self.data.lights, lights);
// Update event lights
self.event_lights.retain_mut(|el| {
el.timeout -= dt;
el.timeout > 0.0
});
// Update shadow constants
let mut shadows = (
&scene_data.state.ecs().read_storage::<comp::Pos>(),
scene_data
.state
.ecs()
.read_storage::<crate::ecs::comp::Interpolated>()
.maybe(),
scene_data.state.ecs().read_storage::<comp::Scale>().maybe(),
&scene_data.state.ecs().read_storage::<comp::Body>(),
&scene_data.state.ecs().read_storage::<comp::Health>(),
)
.join()
.filter(|(_, _, _, _, health)| !health.is_dead)
.filter(|(pos, _, _, _, _)| {
pos.0.distance_squared(viewpoint_pos)
< (loaded_distance.min(SHADOW_MAX_DIST) + SHADOW_DIST_RADIUS).powi(2)
})
.map(|(pos, interpolated, scale, _, _)| {
Shadow::new(
// Use interpolated values pos if it is available
interpolated.map_or(pos.0, |i| i.pos),
scale.map_or(1.0, |s| s.0),
)
})
.collect::<Vec<_>>();
shadows.sort_by_key(|shadow| shadow.get_pos().distance_squared(viewpoint_pos) as i32);
shadows.truncate(MAX_SHADOW_COUNT);
renderer.update_consts(&mut self.data.shadows, &shadows);
// Remember to put the new loaded distance back in the scene.
self.loaded_distance = loaded_distance;
// Update light projection matrices for the shadow map.
// When the target time of day and time of day have a large discrepancy
// (i.e two days), the linear interpolation causes brght flashing effects
// in the sky. This will snap the time of day to the target time of day
// for the client to avoid the flashing effect if flashing lights is
// disabled.
const DAY: f64 = 60.0 * 60.0 * 24.0;
let time_of_day = scene_data.state.get_time_of_day();
let max_lerp_period = if scene_data.flashing_lights_enabled {
DAY * 2.0
} else {
DAY * 0.25
};
self.interpolated_time_of_day =
Some(self.interpolated_time_of_day.map_or(time_of_day, |tod| {
if (tod - time_of_day).abs() > max_lerp_period {
time_of_day
} else {
Lerp::lerp(tod, time_of_day, dt as f64)
}
}));
let time_of_day = self.interpolated_time_of_day.unwrap_or(time_of_day);
let focus_pos = self.camera.get_focus_pos();
let focus_off = focus_pos.map(|e| e.trunc());
// Update global constants.
renderer.update_consts(&mut self.data.globals, &[Globals::new(
view_mat,
proj_mat,
cam_pos,
focus_pos,
self.loaded_distance,
self.lod.get_data().tgt_detail as f32,
self.map_bounds,
time_of_day,
scene_data.state.get_time(),
self.local_time,
renderer.resolution().as_(),
Vec2::new(SHADOW_NEAR, SHADOW_FAR),
lights.len(),
shadows.len(),
NUM_DIRECTED_LIGHTS,
scene_data
.state
.terrain()
.get((cam_pos + focus_off).map(|e| e.floor() as i32))
.ok()
// Don't block the camera's view in solid blocks if the player is a moderator
.filter(|b| !(b.is_filled() && client.is_moderator()))
.map(|b| b.kind())
.unwrap_or(BlockKind::Air),
self.select_pos.map(|e| e - focus_off.map(|e| e as i32)),
scene_data.gamma,
scene_data.exposure,
self.last_lightning.unwrap_or((Vec3::zero(), -1000.0)),
self.wind_vel,
scene_data.ambiance,
self.camera.get_mode(),
scene_data.sprite_render_distance - 20.0,
)]);
renderer.update_clouds_locals(CloudsLocals::new(proj_mat_inv, view_mat_inv));
renderer.update_postprocess_locals(PostProcessLocals::new(proj_mat_inv, view_mat_inv));
// Maintain LoD.
self.lod.maintain(renderer, client, focus_pos, &self.camera);
// Maintain tethers.
self.tether_mgr.maintain(renderer, client, focus_pos);
// Maintain debug shapes
self.debug.maintain(renderer);
// Maintain the terrain.
let (
_visible_bounds,
visible_light_volume,
visible_psr_bounds,
visible_occlusion_volume,
visible_por_bounds,
) = self.terrain.maintain(
renderer,
scene_data,
focus_pos,
self.loaded_distance,
&self.camera,
);
// Maintain the figures.
let _figure_bounds = self.figure_mgr.maintain(
renderer,
&mut self.trail_mgr,
scene_data,
visible_psr_bounds,
visible_por_bounds,
&self.camera,
Some(&self.terrain),
);
let fov = self.camera.get_effective_fov();
let aspect_ratio = self.camera.get_aspect_ratio();
let view_dir = ((focus_pos.map(f32::fract)) - cam_pos).normalized();
// We need to compute these offset matrices to transform world space coordinates
// to the translated ones we use when multiplying by the light space
// matrix; this helps avoid precision loss during the
// multiplication.
let look_at = math::Vec3::from(cam_pos);
let new_dir = math::Vec3::from(view_dir);
let new_dir = new_dir.normalized();
let up: math::Vec3<f32> = math::Vec3::unit_y();
// Optimal warping for directed lights:
//
// n_opt = 1 / sin y (z_n + √(z_n + (f - n) sin y))
//
// where n is near plane, f is far plane, y is the tilt angle between view and
// light direction, and n_opt is the optimal near plane.
// We also want a way to transform and scale this matrix (* 0.5 + 0.5) in order
// to transform it correctly into texture coordinates, as well as
// OpenGL coordinates. Note that the matrix for directional light
// is *already* linear in the depth buffer.
//
// Also, observe that we flip the texture sampling matrix in order to account
// for the fact that DirectX renders top-down.
let texture_mat = Mat4::<f32>::scaling_3d::<Vec3<f32>>(Vec3::new(0.5, -0.5, 1.0))
* Mat4::translation_3d(Vec3::new(1.0, -1.0, 0.0));
let directed_mats = |d_view_mat: math::Mat4<f32>,
d_dir: math::Vec3<f32>,
volume: &Vec<math::Vec3<f32>>|
-> (Mat4<f32>, Mat4<f32>) {
// NOTE: Light view space, right-handed.
let v_p_orig = math::Vec3::from(d_view_mat * math::Vec4::from_direction(new_dir));
let mut v_p = v_p_orig.normalized();
let cos_gamma = new_dir.map(f64::from).dot(d_dir.map(f64::from));
let sin_gamma = (1.0 - cos_gamma * cos_gamma).sqrt();
let gamma = sin_gamma.asin();
let view_mat = math::Mat4::from_col_array(view_mat.into_col_array());
// coordinates are transformed from world space (right-handed) to view space
// (right-handed).
let bounds1 = math::fit_psr(
view_mat.map_cols(math::Vec4::from),
volume.iter().copied(),
math::Vec4::homogenized,
);
let n_e = f64::from(-bounds1.max.z);
let factor = compute_warping_parameter_perspective(
gamma,
n_e,
f64::from(fov),
f64::from(aspect_ratio),
);
v_p.z = 0.0;
v_p.normalize();
let l_r: math::Mat4<f32> = if factor > EPSILON_UPSILON {
// NOTE: Our coordinates are now in left-handed space, but v_p isn't; however,
// v_p has no z component, so we don't have to adjust it for left-handed
// spaces.
math::Mat4::look_at_lh(math::Vec3::zero(), math::Vec3::unit_z(), v_p)
} else {
math::Mat4::identity()
};
// Convert from right-handed to left-handed coordinates.
let directed_proj_mat = math::Mat4::new(
1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
);
let light_all_mat = l_r * directed_proj_mat * d_view_mat;
// coordinates are transformed from world space (right-handed) to rotated light
// space (left-handed).
let bounds0 = math::fit_psr(
light_all_mat,
volume.iter().copied(),
math::Vec4::homogenized,
);
// Vague idea: project z_n from the camera view to the light view (where it's
// tilted by γ).
//
// NOTE: To transform a normal by M, we multiply by the transpose of the inverse
// of M. For the cases below, we are transforming by an
// already-inverted matrix, so the transpose of its inverse is
// just the transpose of the original matrix.
let (z_0, z_1) = {
let f_e = f64::from(-bounds1.min.z).max(n_e);
// view space, right-handed coordinates.
let p_z = bounds1.max.z;
// rotated light space, left-handed coordinates.
let p_y = bounds0.min.y;
let p_x = bounds0.center().x;
// moves from view-space (right-handed) to world space (right-handed)
let view_inv = view_mat.inverted();
// moves from rotated light space (left-handed) to world space (right-handed).
let light_all_inv = light_all_mat.inverted();
// moves from view-space (right-handed) to world-space (right-handed).
let view_point = view_inv
* math::Vec4::from_point(
-math::Vec3::unit_z() * p_z, /* + math::Vec4::unit_w() */
);
let view_plane = view_mat.transposed() * -math::Vec4::unit_z();
// moves from rotated light space (left-handed) to world space (right-handed).
let light_point = light_all_inv
* math::Vec4::from_point(
math::Vec3::unit_y() * p_y, /* + math::Vec4::unit_w() */
);
let light_plane = light_all_mat.transposed() * math::Vec4::unit_y();
// moves from rotated light space (left-handed) to world space (right-handed).
let shadow_point = light_all_inv
* math::Vec4::from_point(
math::Vec3::unit_x() * p_x, /* + math::Vec4::unit_w() */
);
let shadow_plane = light_all_mat.transposed() * math::Vec4::unit_x();
// Find the point at the intersection of the three planes; note that since the
// equations are already in right-handed world space, we don't need to negate
// the z coordinates.
let solve_p0 = math::Mat4::new(
view_plane.x,
view_plane.y,
view_plane.z,
0.0,
light_plane.x,
light_plane.y,
light_plane.z,
0.0,
shadow_plane.x,
shadow_plane.y,
shadow_plane.z,
0.0,
0.0,
0.0,
0.0,
1.0,
);
// in world-space (right-handed).
let plane_dist = math::Vec4::new(
view_plane.dot(view_point),
light_plane.dot(light_point),
shadow_plane.dot(shadow_point),
1.0,
);
let p0_world = solve_p0.inverted() * plane_dist;
// in rotated light-space (left-handed).
let p0 = light_all_mat * p0_world;
let mut p1 = p0;
// in rotated light-space (left-handed).
p1.y = bounds0.max.y;
// transforms from rotated light-space (left-handed) to view space
// (right-handed).
let view_from_light_mat = view_mat * light_all_inv;
// z0 and z1 are in view space (right-handed).
let z0 = view_from_light_mat * p0;
let z1 = view_from_light_mat * p1;
// Extract the homogenized forward component (right-handed).
//
// NOTE: I don't think the w component should be anything but 1 here, but
// better safe than sorry.
(
f64::from(z0.homogenized().dot(-math::Vec4::unit_z())).clamp(n_e, f_e),
f64::from(z1.homogenized().dot(-math::Vec4::unit_z())).clamp(n_e, f_e),
)
};
// all of this is in rotated light-space (left-handed).
let mut light_focus_pos: math::Vec3<f32> = math::Vec3::zero();
light_focus_pos.x = bounds0.center().x;
light_focus_pos.y = bounds0.min.y;
light_focus_pos.z = bounds0.center().z;
let d = f64::from(bounds0.max.y - bounds0.min.y).abs();
let w_l_y = d;
// NOTE: See section 5.1.2.2 of Lloyd's thesis.
// NOTE: Since z_1 and z_0 are in the same coordinate space, we don't have to
// worry about the handedness of their ratio.
let alpha = z_1 / z_0;
let alpha_sqrt = alpha.sqrt();
let directed_near_normal = if factor < 0.0 {
// Standard shadow map to LiSPSM
(1.0 + alpha_sqrt - factor * (alpha - 1.0)) / ((alpha - 1.0) * (factor + 1.0))
} else {
// LiSPSM to PSM
((alpha_sqrt - 1.0) * (factor * alpha_sqrt + 1.0)).recip()
};
// Equation 5.14 - 5.16
let y_ = |v: f64| w_l_y * (v + directed_near_normal).abs();
let directed_near = y_(0.0) as f32;
let directed_far = y_(1.0) as f32;
light_focus_pos.y = if factor > EPSILON_UPSILON {
light_focus_pos.y - directed_near
} else {
light_focus_pos.y
};
// Left-handed translation.
let w_v: math::Mat4<f32> = math::Mat4::translation_3d(-math::Vec3::new(
light_focus_pos.x,
light_focus_pos.y,
light_focus_pos.z,
));
let shadow_view_mat: math::Mat4<f32> = w_v * light_all_mat;
let w_p: math::Mat4<f32> = {
if factor > EPSILON_UPSILON {
// Projection for y
let near = directed_near;
let far = directed_far;
let left = -1.0;
let right = 1.0;
let bottom = -1.0;
let top = 1.0;
let s_x = 2.0 * near / (right - left);
let o_x = (right + left) / (right - left);
let s_z = 2.0 * near / (top - bottom);
let o_z = (top + bottom) / (top - bottom);
let s_y = (far + near) / (far - near);
let o_y = -2.0 * far * near / (far - near);
math::Mat4::new(
s_x, o_x, 0.0, 0.0, 0.0, s_y, 0.0, o_y, 0.0, o_z, s_z, 0.0, 0.0, 1.0, 0.0,
0.0,
)
} else {
math::Mat4::identity()
}
};
let shadow_all_mat: math::Mat4<f32> = w_p * shadow_view_mat;
// coordinates are transformed from world space (right-handed)
// to post-warp light space (left-handed), then homogenized.
let math::Aabb::<f32> {
min:
math::Vec3 {
x: xmin,
y: ymin,
z: zmin,
},
max:
math::Vec3 {
x: xmax,
y: ymax,
z: zmax,
},
} = math::fit_psr(
shadow_all_mat,
volume.iter().copied(),
math::Vec4::homogenized,
);
let s_x = 2.0 / (xmax - xmin);
let s_y = 2.0 / (ymax - ymin);
let s_z = 1.0 / (zmax - zmin);
let o_x = -(xmax + xmin) / (xmax - xmin);
let o_y = -(ymax + ymin) / (ymax - ymin);
let o_z = -zmin / (zmax - zmin);
let directed_proj_mat = Mat4::new(
s_x, 0.0, 0.0, o_x, 0.0, s_y, 0.0, o_y, 0.0, 0.0, s_z, o_z, 0.0, 0.0, 0.0, 1.0,
);
let shadow_all_mat: Mat4<f32> = Mat4::from_col_arrays(shadow_all_mat.into_col_arrays());
let directed_texture_proj_mat = texture_mat * directed_proj_mat;
(
directed_proj_mat * shadow_all_mat,
directed_texture_proj_mat * shadow_all_mat,
)
};
let weather = client
.state()
.max_weather_near(focus_off.xy() + cam_pos.xy());
self.wind_vel = weather.wind_vel();
if weather.rain > RAIN_THRESHOLD {
let weather = client.weather_at_player();
let rain_vel = weather.rain_vel();
let rain_view_mat = math::Mat4::look_at_rh(look_at, look_at + rain_vel, up);
self.integrated_rain_vel += rain_vel.magnitude() * dt;
let rain_dir_mat = Mat4::rotation_from_to_3d(-Vec3::unit_z(), rain_vel);
let (shadow_mat, texture_mat) =
directed_mats(rain_view_mat, rain_vel.into(), &visible_occlusion_volume);
let rain_occlusion_locals = RainOcclusionLocals::new(
shadow_mat,
texture_mat,
rain_dir_mat,
weather.rain,
self.integrated_rain_vel,
);
renderer.update_consts(&mut self.data.rain_occlusion_mats, &[rain_occlusion_locals]);
} else if self.integrated_rain_vel > 0.0 {
self.integrated_rain_vel = 0.0;
// Need to set rain to zero
let rain_occlusion_locals = RainOcclusionLocals::default();
renderer.update_consts(&mut self.data.rain_occlusion_mats, &[rain_occlusion_locals]);
}
let sun_dir = scene_data.get_sun_dir();
let is_daylight = sun_dir.z < 0.0;
if renderer.pipeline_modes().shadow.is_map() && (is_daylight || !lights.is_empty()) {
let (point_shadow_res, _directed_shadow_res) = renderer.get_shadow_resolution();
// NOTE: The aspect ratio is currently always 1 for our cube maps, since they
// are equal on all sides.
let point_shadow_aspect = point_shadow_res.x as f32 / point_shadow_res.y as f32;
// Construct matrices to transform from world space to light space for the sun
// and moon.
let directed_light_dir = math::Vec3::from(sun_dir);
// We upload view matrices as well, to assist in linearizing vertex positions.
// (only for directional lights, so far).
let mut directed_shadow_mats = Vec::with_capacity(6);
let light_view_mat = math::Mat4::look_at_rh(look_at, look_at + directed_light_dir, up);
let (shadow_mat, texture_mat) =
directed_mats(light_view_mat, directed_light_dir, &visible_light_volume);
let shadow_locals = ShadowLocals::new(shadow_mat, texture_mat);
renderer.update_consts(&mut self.data.shadow_mats, &[shadow_locals]);
directed_shadow_mats.push(light_view_mat);
// This leaves us with five dummy slots, which we push as defaults.
directed_shadow_mats
.extend_from_slice(&[math::Mat4::default(); 6 - NUM_DIRECTED_LIGHTS] as _);
// Now, construct the full projection matrices in the first two directed light
// slots.
let mut shadow_mats = Vec::with_capacity(6 * (lights.len() + 1));
shadow_mats.resize_with(6, PointLightMatrix::default);
// Now, we tackle point lights.
// First, create a perspective projection matrix at 90 degrees (to cover a whole
// face of the cube map we're using); we use a negative near plane to exactly
// match OpenGL's behavior if we use a left-handed coordinate system everywhere
// else.
let shadow_proj = camera::perspective_rh_zo_general(
90.0f32.to_radians(),
point_shadow_aspect,
1.0 / SHADOW_NEAR,
1.0 / SHADOW_FAR,
);
// NOTE: We negate here to emulate a right-handed projection with a negative
// near plane, which produces the correct transformation to exactly match
// OpenGL's rendering behavior if we use a left-handed coordinate
// system everywhere else.
let shadow_proj = shadow_proj * Mat4::scaling_3d(-1.0);
// Next, construct the 6 orientations we'll use for the six faces, in terms of
// their (forward, up) vectors.
let orientations = [
(Vec3::new(1.0, 0.0, 0.0), Vec3::new(0.0, -1.0, 0.0)),
(Vec3::new(-1.0, 0.0, 0.0), Vec3::new(0.0, -1.0, 0.0)),
(Vec3::new(0.0, 1.0, 0.0), Vec3::new(0.0, 0.0, 1.0)),
(Vec3::new(0.0, -1.0, 0.0), Vec3::new(0.0, 0.0, -1.0)),
(Vec3::new(0.0, 0.0, 1.0), Vec3::new(0.0, -1.0, 0.0)),
(Vec3::new(0.0, 0.0, -1.0), Vec3::new(0.0, -1.0, 0.0)),
];
// NOTE: We could create the shadow map collection at the same time as the
// lights, but then we'd have to sort them both, which wastes time. Plus, we
// want to prepend our directed lights.
shadow_mats.extend(lights.iter().flat_map(|light| {
// Now, construct the full projection matrix by making the light look at each
// cube face.
let eye = Vec3::new(light.pos[0], light.pos[1], light.pos[2]) - focus_off;
orientations.iter().map(move |&(forward, up)| {
// NOTE: We don't currently try to linearize point lights or need a separate
// transform for them.
PointLightMatrix::new(shadow_proj * Mat4::look_at_lh(eye, eye + forward, up))
})
}));
for (i, val) in shadow_mats.into_iter().enumerate() {
self.data.point_light_matrices[i] = val
}
}
// Remove unused figures.
self.figure_mgr.clean(scene_data.tick);
// Maintain audio
self.sfx_mgr.maintain(
audio,
scene_data.state,
scene_data.viewpoint_entity,
&self.camera,
&self.terrain,
client,
);
self.ambience_mgr
.maintain(audio, scene_data.state, client, &self.camera);
self.music_mgr.maintain(audio, scene_data.state, client);
}
pub fn global_bind_group(&self) -> &GlobalsBindGroup { &self.globals_bind_group }
/// Render the scene using the provided `Drawer`.
pub fn render(
&self,
drawer: &mut Drawer<'_>,
state: &State,
viewpoint_entity: EcsEntity,
tick: u64,
scene_data: &SceneData,
) {
span!(_guard, "render", "Scene::render");
let sun_dir = scene_data.get_sun_dir();
let is_daylight = sun_dir.z < 0.0;
let focus_pos = self.camera.get_focus_pos();
let cam_pos = self.camera.dependents().cam_pos + focus_pos.map(|e| e.trunc());
let is_rain = state.max_weather_near(cam_pos.xy()).rain > RAIN_THRESHOLD;
let culling_mode = if scene_data
.state
.terrain()
.get_key(scene_data.state.terrain().pos_key(cam_pos.as_()))
.map_or(false, |c| {
cam_pos.z < c.meta().alt() - terrain::UNDERGROUND_ALT
}) {
CullingMode::Underground
} else {
CullingMode::Surface
};
let camera_data = (&self.camera, scene_data.figure_lod_render_distance);
// would instead have this as an extension.
if drawer.pipeline_modes().shadow.is_map() && (is_daylight || !self.light_data.is_empty()) {
if is_daylight {
prof_span!("directed shadows");
if let Some(mut shadow_pass) = drawer.shadow_pass() {
// Render terrain directed shadows.
self.terrain.render_shadows(
&mut shadow_pass.draw_terrain_shadows(),
focus_pos,
culling_mode,
);
// Render figure directed shadows.
self.figure_mgr.render_shadows(
&mut shadow_pass.draw_figure_shadows(),
state,
tick,
camera_data,
);
self.debug
.render_shadows(&mut shadow_pass.draw_debug_shadows());
}
}
// Render terrain point light shadows.
{
prof_span!("point shadows");
drawer.draw_point_shadows(
&self.data.point_light_matrices,
self.terrain.chunks_for_point_shadows(focus_pos),
)
}
}
// Render rain occlusion texture
if is_rain {
prof_span!("rain occlusion");
if let Some(mut occlusion_pass) = drawer.rain_occlusion_pass() {
self.terrain
.render_rain_occlusion(&mut occlusion_pass.draw_terrain_shadows(), cam_pos);
self.figure_mgr.render_rain_occlusion(
&mut occlusion_pass.draw_figure_shadows(),
state,
tick,
camera_data,
);
}
}
prof_span!(guard, "main pass");
if let Some(mut first_pass) = drawer.first_pass() {
self.figure_mgr.render_viewpoint(
&mut first_pass.draw_figures(),
state,
viewpoint_entity,
tick,
camera_data,
);
self.terrain
.render(&mut first_pass, focus_pos, culling_mode);
self.figure_mgr.render(
&mut first_pass.draw_figures(),
state,
viewpoint_entity,
tick,
camera_data,
);
self.lod.render(&mut first_pass, culling_mode);
// Render the skybox.
first_pass.draw_skybox(&self.skybox.model);
// Draws sprites
let mut sprite_drawer = first_pass.draw_sprites(
&self.terrain.sprite_globals,
&self.terrain.sprite_render_state.sprite_atlas_textures,
);
self.figure_mgr.render_sprites(
&mut sprite_drawer,
state,
cam_pos,
scene_data.sprite_render_distance,
);
self.terrain.render_sprites(
&mut sprite_drawer,
focus_pos,
cam_pos,
scene_data.sprite_render_distance,
culling_mode,
);
drop(sprite_drawer);
// Render tethers.
self.tether_mgr.render(&mut first_pass);
// Draws translucent
self.terrain.render_translucent(&mut first_pass, focus_pos);
// Render particle effects.
self.particle_mgr
.render(&mut first_pass.draw_particles(), scene_data);
// Render debug shapes
self.debug.render(&mut first_pass.draw_debug());
}
drop(guard);
}
pub fn maintain_debug_hitboxes(
&mut self,
client: &Client,
settings: &Settings,
hitboxes: &mut HashMap<specs::Entity, DebugShapeId>,
tracks: &mut HashMap<Vec2<i32>, Vec<DebugShapeId>>,
) {
let ecs = client.state().ecs();
{
let mut current_chunks = hashbrown::HashSet::new();
let terrain_grid = ecs.read_resource::<TerrainGrid>();
for (key, chunk) in terrain_grid.iter() {
current_chunks.insert(key);
tracks.entry(key).or_insert_with(|| {
let mut ret = Vec::new();
for bezier in chunk.meta().tracks().iter() {
let shape_id = self.debug.add_shape(DebugShape::TrainTrack {
path: *bezier,
rail_width: 0.25,
rail_sep: 1.0,
plank_width: 0.5,
plank_height: 0.125,
plank_sep: 2.0,
});
ret.push(shape_id);
self.debug
.set_context(shape_id, [0.0; 4], [1.0; 4], [0.0, 0.0, 0.0, 1.0]);
}
for point in chunk.meta().debug_points().iter() {
let shape_id = self.debug.add_shape(DebugShape::Cylinder {
radius: 0.1,
height: 0.1,
});
ret.push(shape_id);
self.debug.set_context(
shape_id,
point.with_w(0.0).into_array(),
[1.0; 4],
[0.0, 0.0, 0.0, 1.0],
);
}
for line in chunk.meta().debug_lines().iter() {
let shape_id = self
.debug
.add_shape(DebugShape::Line([line.start, line.end], 0.1));
ret.push(shape_id);
self.debug
.set_context(shape_id, [0.0; 4], [1.0; 4], [0.0, 0.0, 0.0, 1.0]);
}
ret
});
}
tracks.retain(|k, v| {
let keep = current_chunks.contains(k);
if !keep {
for shape in v.iter() {
self.debug.remove_shape(*shape);
}
}
keep
});
}
let mut current_entities = hashbrown::HashSet::new();
if settings.interface.toggle_hitboxes {
let positions = ecs.read_component::<comp::Pos>();
let colliders = ecs.read_component::<comp::Collider>();
let orientations = ecs.read_component::<comp::Ori>();
let scales = ecs.read_component::<comp::Scale>();
let groups = ecs.read_component::<comp::Group>();
for (entity, pos, collider, ori, scale, group) in (
&ecs.entities(),
&positions,
&colliders,
&orientations,
scales.maybe(),
groups.maybe(),
)
.join()
{
match collider {
comp::Collider::CapsulePrism {
p0,
p1,
radius,
z_min,
z_max,
} => {
let scale = scale.map_or(1.0, |s| s.0);
current_entities.insert(entity);
let shape = DebugShape::CapsulePrism {
p0: *p0 * scale,
p1: *p1 * scale,
radius: *radius * scale,
height: (*z_max - *z_min) * scale,
};
// If this shape no longer matches, remove the old one
if let Some(shape_id) = hitboxes.get(&entity) {
if self
.debug
.get_shape(*shape_id)
.map_or(false, |s| s != &shape)
{
self.debug.remove_shape(*shape_id);
hitboxes.remove(&entity);
}
}
let shape_id = hitboxes
.entry(entity)
.or_insert_with(|| self.debug.add_shape(shape));
let hb_pos = [pos.0.x, pos.0.y, pos.0.z + *z_min * scale, 0.0];
let color = if group == Some(&comp::group::ENEMY) {
[1.0, 0.0, 0.0, 0.5]
} else if group == Some(&comp::group::NPC) {
[0.0, 0.0, 1.0, 0.5]
} else {
[0.0, 1.0, 0.0, 0.5]
};
//let color = [1.0, 1.0, 1.0, 1.0];
let ori = ori.to_quat();
let hb_ori = [ori.x, ori.y, ori.z, ori.w];
self.debug.set_context(*shape_id, hb_pos, color, hb_ori);
},
comp::Collider::Voxel { .. }
| comp::Collider::Volume(_)
| comp::Collider::Point => {
// ignore terrain-like or point-hitboxes
},
}
}
}
hitboxes.retain(|k, v| {
let keep = current_entities.contains(k);
if !keep {
self.debug.remove_shape(*v);
}
keep
});
}
pub fn maintain_debug_vectors(&mut self, client: &Client, lines: &mut PlayerDebugLines) {
lines
.chunk_normal
.take()
.map(|id| self.debug.remove_shape(id));
lines.fluid_vel.take().map(|id| self.debug.remove_shape(id));
lines.wind.take().map(|id| self.debug.remove_shape(id));
lines.vel.take().map(|id| self.debug.remove_shape(id));
if self.debug_vectors_enabled {
let ecs = client.state().ecs();
let vels = &ecs.read_component::<comp::Vel>();
let Some(vel) = vels.get(client.entity()) else {
return;
};
let phys_states = &ecs.read_component::<comp::PhysicsState>();
let Some(phys) = phys_states.get(client.entity()) else {
return;
};
let positions = &ecs.read_component::<comp::Pos>();
let Some(pos) = positions.get(client.entity()) else {
return;
};
let weather = ecs.read_resource::<WeatherGrid>();
// take id and remove to delete the previous lines.
const LINE_WIDTH: f32 = 0.05;
// Fluid Velocity
{
let Some(fluid) = phys.in_fluid else {
return;
};
let shape = DebugShape::Line([pos.0, pos.0 + fluid.flow_vel().0 / 2.], LINE_WIDTH);
let id = self.debug.add_shape(shape);
lines.fluid_vel = Some(id);
self.debug
.set_context(id, [0.0; 4], [0.18, 0.72, 0.87, 0.8], [0.0, 0.0, 0.0, 1.0]);
}
// Chunk Terrain Normal Vector
{
let Some(chunk) = client.current_chunk() else {
return;
};
let shape = DebugShape::Line(
[
pos.0,
pos.0
+ chunk
.meta()
.approx_chunk_terrain_normal()
.unwrap_or(Vec3::unit_z())
* 2.5,
],
LINE_WIDTH,
);
let id = self.debug.add_shape(shape);
lines.chunk_normal = Some(id);
self.debug
.set_context(id, [0.0; 4], [0.22, 0.63, 0.1, 0.8], [0.0, 0.0, 0.0, 1.0]);
}
// Wind
{
let wind = weather.get_interpolated(pos.0.xy()).wind_vel();
let shape = DebugShape::Line([pos.0, pos.0 + wind * 5.0], LINE_WIDTH);
let id = self.debug.add_shape(shape);
lines.wind = Some(id);
self.debug
.set_context(id, [0.0; 4], [0.76, 0.76, 0.76, 0.8], [0.0, 0.0, 0.0, 1.0]);
}
// Player Vel
{
let shape = DebugShape::Line([pos.0, pos.0 + vel.0 / 2.0], LINE_WIDTH);
let id = self.debug.add_shape(shape);
lines.vel = Some(id);
self.debug
.set_context(id, [0.0; 4], [0.98, 0.76, 0.01, 0.8], [0.0, 0.0, 0.0, 1.0]);
}
}
}
}