1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
use crate::{
all::ForestKind,
sim::{local_cells, Cave, Path, RiverKind, SimChunk, WorldSim},
site::SpawnRules,
util::{RandomField, RandomPerm, Sampler},
IndexRef, CONFIG,
};
use common::{
calendar::{Calendar, CalendarEvent},
terrain::{
quadratic_nearest_point, river_spline_coeffs, uniform_idx_as_vec2, vec2_as_uniform_idx,
CoordinateConversions, TerrainChunkSize,
},
vol::RectVolSize,
};
use noise::NoiseFn;
use rand::seq::SliceRandom;
use serde::Deserialize;
use std::ops::{Add, Div, Mul, Sub};
use tracing::error;
use vek::*;
pub struct ColumnGen<'a> {
pub sim: &'a WorldSim,
}
#[derive(Deserialize)]
pub struct Colors {
pub cold_grass: (f32, f32, f32),
pub warm_grass: (f32, f32, f32),
pub dark_grass: (f32, f32, f32),
pub wet_grass: (f32, f32, f32),
pub cold_stone: (f32, f32, f32),
pub hot_stone: (f32, f32, f32),
pub warm_stone: (f32, f32, f32),
pub beach_sand: (f32, f32, f32),
pub desert_sand: (f32, f32, f32),
pub snow: (f32, f32, f32),
pub snow_moss: (f32, f32, f32),
pub stone_col: (u8, u8, u8),
pub dirt_low: (f32, f32, f32),
pub dirt_high: (f32, f32, f32),
pub snow_high: (f32, f32, f32),
pub warm_stone_high: (f32, f32, f32),
pub grass_high: (f32, f32, f32),
pub tropical_high: (f32, f32, f32),
pub mesa_layers: Vec<(f32, f32, f32)>,
}
/// Generalised power function, pushes values in the range 0-1 to extremes.
fn power(x: f64, t: f64) -> f64 {
if x < 0.5 {
(2.0 * x).powf(t) / 2.0
} else {
1.0 - (-2.0 * x + 2.0).powf(t) / 2.0
}
}
impl<'a> ColumnGen<'a> {
pub fn new(sim: &'a WorldSim) -> Self { Self { sim } }
}
impl<'a> Sampler<'a> for ColumnGen<'a> {
type Index = (Vec2<i32>, IndexRef<'a>, Option<&'a Calendar>);
type Sample = Option<ColumnSample<'a>>;
fn get(&self, (wpos, index, calendar): Self::Index) -> Option<ColumnSample<'a>> {
let wposf = wpos.map(|e| e as f64);
let chunk_pos = wpos.wpos_to_cpos();
let sim = &self.sim;
// let turb = Vec2::new(
// sim.gen_ctx.turb_x_nz.get((wposf.div(48.0)).into_array()) as f32,
// sim.gen_ctx.turb_y_nz.get((wposf.div(48.0)).into_array()) as f32,
// ) * 12.0;
let wposf_turb = wposf; // + turb.map(|e| e as f64);
let chaos = sim.get_interpolated(wpos, |chunk| chunk.chaos)?;
let temp = sim.get_interpolated(wpos, |chunk| chunk.temp)?;
let humidity = sim.get_interpolated(wpos, |chunk| chunk.humidity)?;
let rockiness = sim.get_interpolated(wpos, |chunk| chunk.rockiness)?;
let tree_density = sim.get_interpolated(wpos, |chunk| chunk.tree_density)?;
let spawn_rate = sim.get_interpolated(wpos, |chunk| chunk.spawn_rate)?;
let near_water =
sim.get_interpolated(
wpos,
|chunk| if chunk.river.near_water() { 1.0 } else { 0.0 },
)?;
let water_vel = sim.get_interpolated(wpos, |chunk| {
if chunk.river.river_kind.is_some() {
chunk.river.velocity
} else {
Vec3::zero()
}
})?;
let alt = sim.get_interpolated_monotone(wpos, |chunk| chunk.alt)?;
let surface_veg = sim.get_interpolated_monotone(wpos, |chunk| chunk.surface_veg)?;
let sim_chunk = sim.get(chunk_pos)?;
let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
let my_chunk_idx = vec2_as_uniform_idx(self.sim.map_size_lg(), chunk_pos);
let neighbor_river_data =
local_cells(self.sim.map_size_lg(), my_chunk_idx).filter_map(|neighbor_idx: usize| {
let neighbor_pos = uniform_idx_as_vec2(self.sim.map_size_lg(), neighbor_idx);
let neighbor_chunk = sim.get(neighbor_pos)?;
Some((neighbor_pos, neighbor_chunk, &neighbor_chunk.river))
});
let spawn_rules = sim_chunk
.sites
.iter()
.map(|site| index.sites[*site].spawn_rules(wpos))
.fold(SpawnRules::default(), |a, b| a.combine(b));
const SAMP_RES: i32 = 8;
let altx0 = sim.get_interpolated(wpos - Vec2::new(1, 0) * SAMP_RES, |chunk| chunk.alt);
let altx1 = sim.get_interpolated(wpos + Vec2::new(1, 0) * SAMP_RES, |chunk| chunk.alt);
let alty0 = sim.get_interpolated(wpos - Vec2::new(0, 1) * SAMP_RES, |chunk| chunk.alt);
let alty1 = sim.get_interpolated(wpos + Vec2::new(0, 1) * SAMP_RES, |chunk| chunk.alt);
let gradient =
altx0
.zip(altx1)
.zip_with(alty0.zip(alty1), |(altx0, altx1), (alty0, alty1)| {
Vec2::new(altx1 - altx0, alty1 - alty0)
.map(f32::abs)
.magnitude()
/ SAMP_RES as f32
});
let wposf3d = Vec3::new(wposf.x, wposf.y, alt as f64);
let marble_small = (sim.gen_ctx.hill_nz.get((wposf3d.div(3.0)).into_array()) as f32)
.powi(3)
.add(1.0)
.mul(0.5);
let marble_mid = (sim.gen_ctx.hill_nz.get((wposf3d.div(12.0)).into_array()) as f32)
.mul(0.75)
.add(1.0)
.mul(0.5);
//.add(marble_small.sub(0.5).mul(0.25));
let marble = (sim.gen_ctx.hill_nz.get((wposf3d.div(48.0)).into_array()) as f32)
.mul(0.75)
.add(1.0)
.mul(0.5);
let marble_mixed = marble
.add(marble_mid.sub(0.5).mul(0.5))
.add(marble_small.sub(0.5).mul(0.25));
let lake_width = (TerrainChunkSize::RECT_SIZE.x as f64 * 2.0f64.sqrt()) + 6.0;
let neighbor_river_data = neighbor_river_data
.map(|(posj, chunkj, river)| {
let kind = match river.river_kind {
Some(kind) => kind,
None => {
return (posj, chunkj, river, None);
},
};
let downhill_pos = if let Some(pos) = chunkj.downhill {
pos
} else {
match kind {
RiverKind::River { .. } => {
error!(?river, ?posj, "What?");
panic!("How can a river have no downhill?");
},
RiverKind::Lake { .. } => {
return (posj, chunkj, river, None);
},
RiverKind::Ocean => posj,
}
};
let downhill_wpos = downhill_pos.map(|e| e as f64);
let downhill_pos = downhill_pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
e.div_euclid(sz as i32)
});
let neighbor_wpos = posj.map(|e| e as f64) * neighbor_coef + neighbor_coef * 0.5;
let direction = neighbor_wpos - downhill_wpos;
let river_width_min = if let RiverKind::River { cross_section } = kind {
cross_section.x as f64
} else {
lake_width
};
let downhill_chunk = sim.get(downhill_pos).expect("How can this not work?");
let coeffs = river_spline_coeffs(
neighbor_wpos,
chunkj.river.spline_derivative,
downhill_wpos,
);
let (direction, coeffs, downhill_chunk, river_t, river_pos, river_dist) = match kind
{
RiverKind::River { .. } => {
if let Some((t, pt, dist)) = quadratic_nearest_point(
&coeffs,
wposf,
Vec2::new(neighbor_wpos, downhill_wpos),
) {
let (t, pt, dist) = if dist > wposf.distance_squared(neighbor_wpos) {
(0.0, neighbor_wpos, wposf.distance_squared(neighbor_wpos))
} else if dist > wposf.distance_squared(downhill_wpos) {
(1.0, downhill_wpos, wposf.distance_squared(downhill_wpos))
} else {
(t, pt, dist)
};
(direction, coeffs, downhill_chunk, t, pt, dist.sqrt())
} else {
let ndist = wposf.distance_squared(neighbor_wpos);
let ddist = wposf.distance_squared(downhill_wpos);
let (closest_pos, closest_dist, closest_t) = if ndist <= ddist {
(neighbor_wpos, ndist, 0.0)
} else {
(downhill_wpos, ddist, 1.0)
};
(
direction,
coeffs,
downhill_chunk,
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
},
RiverKind::Lake { neighbor_pass_pos } => {
let pass_dist = neighbor_pass_pos
.map2(
neighbor_wpos
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|e, (f, g)| ((e - f) / g).abs(),
)
.reduce_partial_max();
let spline_derivative = river.spline_derivative;
let neighbor_pass_pos = if pass_dist <= 1 {
neighbor_pass_pos
} else {
downhill_wpos.map(|e| e as i32)
};
let pass_dist = neighbor_pass_pos
.map2(
neighbor_wpos
.map2(TerrainChunkSize::RECT_SIZE, |f, g| (f as i32, g as i32)),
|e, (f, g)| ((e - f) / g).abs(),
)
.reduce_partial_max();
if pass_dist > 1 {
return (posj, chunkj, river, None);
}
let neighbor_pass_wpos =
neighbor_pass_pos.map(|e| e as f64) + neighbor_coef * 0.5;
let neighbor_pass_pos = neighbor_pass_pos.wpos_to_cpos();
let coeffs = river_spline_coeffs(
neighbor_wpos,
spline_derivative,
neighbor_pass_wpos,
);
let direction = neighbor_wpos - neighbor_pass_wpos;
// Lakes get a special distance function to avoid cookie-cutter edges
if matches!(
downhill_chunk.river.river_kind,
Some(RiverKind::Lake { .. } | RiverKind::Ocean)
) {
let water_chunk = posj.map(|e| e as f64);
let lake_width_noise =
sim.gen_ctx.small_nz.get(wposf.div(32.0).into_array());
let water_aabr = Aabr {
min: water_chunk * neighbor_coef + 4.0 - lake_width_noise * 8.0,
max: (water_chunk + 1.0) * neighbor_coef - 4.0
+ lake_width_noise * 8.0,
};
let pos = water_aabr.projected_point(wposf);
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
0.5,
pos,
pos.distance(wposf),
)
} else if let Some((t, pt, dist)) = quadratic_nearest_point(
&coeffs,
wposf,
Vec2::new(neighbor_wpos, neighbor_pass_wpos),
) {
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
t,
pt,
dist.sqrt(),
)
} else {
let ndist = wposf.distance_squared(neighbor_wpos);
/* let ddist = wposf.distance_squared(neighbor_pass_wpos); */
let (closest_pos, closest_dist, closest_t) = /*if ndist <= ddist */ {
(neighbor_wpos, ndist, 0.0)
} /* else {
(neighbor_pass_wpos, ddist, 1.0)
} */;
(
direction,
coeffs,
sim.get(neighbor_pass_pos).expect("Must already work"),
closest_t,
closest_pos,
closest_dist.sqrt(),
)
}
},
RiverKind::Ocean => {
let water_chunk = posj.map(|e| e as f64);
let lake_width_noise =
sim.gen_ctx.small_nz.get(wposf.div(32.0).into_array());
let water_aabr = Aabr {
min: water_chunk * neighbor_coef + 4.0 - lake_width_noise * 8.0,
max: (water_chunk + 1.0) * neighbor_coef - 4.0 + lake_width_noise * 8.0,
};
let pos = water_aabr.projected_point(wposf);
(
direction,
coeffs,
sim.get(posj).expect("Must already work"),
0.5,
pos,
pos.distance(wposf),
)
},
};
let river_width_max = if let Some(RiverKind::River { cross_section }) =
downhill_chunk.river.river_kind
{
// Harmless hack that prevents a river growing wildly outside its bounds to
// create water walls
(cross_section.x as f64).min(river_width_min * 1.75)
} else if let Some(RiverKind::River { cross_section }) = chunkj.river.river_kind {
Lerp::lerp(cross_section.x as f64, lake_width, 0.5)
} else {
// 0.5 prevents rivers pooling into lakes having extremely wide bounds, creating
// water walls
lake_width * 0.5
};
let river_width_noise =
(sim.gen_ctx.small_nz.get((river_pos.div(16.0)).into_array()))
.clamp(-1.0, 1.0)
.mul(0.5)
.sub(0.5);
let river_width = Lerp::lerp(
river_width_min,
river_width_max,
river_t.clamped(0.0, 1.0).powf(3.0),
);
let river_width = river_width.max(2.0) * (1.0 + river_width_noise * 0.3);
// To find the distance, we just evaluate the quadratic equation at river_t and
// see if it's within width (but we should be able to use it for a
// lot more, and this probably isn't the very best approach anyway
// since it will bleed out). let river_pos = coeffs.x * river_t *
// river_t + coeffs.y * river_t + coeffs.z;
// let river_width = 32.0f64;
let res = Vec2::new(0.0, (river_dist - (river_width * 0.5).max(1.0)).max(0.0));
(
posj,
chunkj,
river,
Some((
direction,
res,
river_width,
(river_t, (river_pos, coeffs), downhill_chunk),
)),
)
})
.collect::<Vec<_>>();
debug_assert!(sim_chunk.water_alt >= CONFIG.sea_level);
/// A type that makes managing surface altitude weighting much simpler.
#[derive(Default)]
struct WeightedSum<T> {
sum: T,
weight: T,
min: Option<T>,
max: Option<T>,
}
impl WeightedSum<f32> {
/// Add a weight to the sum.
fn with(self, value: f32, weight: f32) -> Self {
Self {
sum: self.sum + value * weight,
weight: self.weight + weight,
..self
}
}
/// Add an upper bound to the result.
fn with_min(self, min: f32) -> Self {
Self {
min: Some(self.min.unwrap_or(min).min(min)),
..self
}
}
/// Add a lower bound to the result.
fn with_max(self, max: f32) -> Self {
Self {
max: Some(self.max.unwrap_or(max).max(max)),
..self
}
}
/// Evaluate the weighted sum, if weightings were applied.
fn eval(&self) -> Option<f32> {
if self.weight > 0.0 {
let res = self.sum / self.weight;
let res = self.min.map_or(res, |m| m.min(res));
let res = self.max.map_or(res, |m| m.max(res));
Some(res)
} else {
None
}
}
/// Evaluate the weighted sum, or use a default value if no
/// weightings were applied.
fn eval_or(&self, default: f32) -> f32 {
let res = if self.weight > 0.0 {
self.sum / self.weight
} else {
default
};
let res = self.min.map_or(res, |m| m.min(res));
self.max.map_or(res, |m| m.max(res))
}
}
/// Determine whether a river should become a waterfall
fn is_waterfall(
chunk_pos: Vec2<i32>,
river_chunk: &SimChunk,
downhill_chunk: &SimChunk,
) -> bool {
// Waterfalls are rare, so use some hacky RNG seeded with the position to
// reflect that. Additionally, the river must experience a rapid
// change in elevation. Pooling into a lake produces a rapid.
// TODO: Find a better way to produce rapids along the course of a river?
(RandomField::new(3119).chance(chunk_pos.with_z(0), 0.1)
|| matches!(
downhill_chunk.river.river_kind,
Some(RiverKind::Lake { .. })
))
&& (river_chunk.water_alt > downhill_chunk.water_alt + 0.0)
}
/// Determine the altitude of a river based on the altitude of the
/// spline ends and a tweening factor.
fn river_water_alt(a: f32, b: f32, t: f32, is_waterfall: bool) -> f32 {
let t = if is_waterfall {
// Waterfalls bias the water altitude toward extremes
power(t as f64, 3.0 + (a - b).clamped(0.0, 16.0) as f64) as f32
} else {
t
};
Lerp::lerp(a, b, t)
}
// Use this to temporarily alter the sea level
let base_sea_level = CONFIG.sea_level - 1.0 + 0.01;
// What's going on here?
//
// We're iterating over nearby bodies of water and calculating a weighted sum
// for the river water level, the lake water level, and the 'unbounded
// water level' (the maximum water body altitude, which we use later to
// prevent water walls). In doing so, we also apply various clamping strategies
// to catch lots of nasty edge cases, as well as calculating the
// distance to the nearest body of water.
//
// The clamping strategies employed prevent very specific, annoying artifacts
// such as 'water walls' (vertical columns of water that are physically
// implausible) and 'backflows' (regions where a body of water appears to
// flow upstream due to irregular humps along its course).
//
// It is incredibly difficult to explain exactly what every part of this code is
// doing without visual examples. Needless to say, any changes to this
// code *at all* should be very ruggedly tested to ensure that
// they do not result in artifacts, even in edge cases. The exact configuration
// of this code is the product of hundreds of hours of testing and
// refinement and I ask that you do not take that effort lightly.
let (
river_water_level,
in_river,
lake_water_level,
lake_dist,
water_dist,
unbounded_water_level,
) = neighbor_river_data.iter().copied().fold(
(
WeightedSum::default().with_max(base_sea_level),
false,
WeightedSum::default().with_max(base_sea_level),
10000.0f32,
None,
WeightedSum::default().with_max(base_sea_level),
),
|(
mut river_water_level,
mut in_river,
lake_water_level,
mut lake_dist,
water_dist,
mut unbounded_water_level,
),
(river_chunk_idx, river_chunk, river, dist_info)| match (
river.river_kind,
dist_info,
) {
(
Some(kind),
Some((_, _, river_width, (river_t, (river_pos, _), downhill_chunk))),
) => {
// Distance from river center
let river_dist = river_pos.distance(wposf);
// Distance from edge of river
let river_edge_dist = (river_dist - river_width * 0.5).max(0.0) as f32;
// 0.0 = not near river, 1.0 = in middle of river
let near_center = ((river_dist / (river_width * 0.5)) as f32)
.min(1.0)
.mul(std::f32::consts::PI)
.cos()
.add(1.0)
.mul(0.5);
match kind {
RiverKind::River { .. } => {
// Alt of river water *is* the alt of land (ignoring gorge, which gets
// applied later)
let river_water_alt = river_water_alt(
river_chunk.alt.max(river_chunk.water_alt),
downhill_chunk.alt.max(downhill_chunk.water_alt),
river_t as f32,
is_waterfall(river_chunk_idx, river_chunk, downhill_chunk),
);
river_water_level =
river_water_level.with(river_water_alt, near_center);
if river_edge_dist <= 0.0 {
in_river = true;
}
},
// Slightly wider threshold is chosen in case the lake bounds are a bit
// wrong
RiverKind::Lake { .. } | RiverKind::Ocean => {
let lake_water_alt = if matches!(kind, RiverKind::Ocean) {
base_sea_level
} else {
river_water_alt(
river_chunk.alt.max(river_chunk.water_alt),
downhill_chunk.alt.max(downhill_chunk.water_alt),
river_t as f32,
is_waterfall(river_chunk_idx, river_chunk, downhill_chunk),
)
};
if river_edge_dist > 0.0 && river_width > lake_width * 0.99 {
let unbounded_water_alt = lake_water_alt
- ((river_edge_dist - 8.0).max(0.0) / 5.0).powf(2.0);
unbounded_water_level = unbounded_water_level
.with(unbounded_water_alt, 1.0 / (1.0 + river_edge_dist * 5.0));
//.with_max(unbounded_water_alt);
}
river_water_level = river_water_level.with(lake_water_alt, near_center);
lake_dist = lake_dist.min(river_edge_dist);
// Lake border prevents a lake failing to propagate its altitude to
// nearby rivers
let off = 0.0;
let len = 3.0;
if river_edge_dist <= off {
// lake_water_level = lake_water_level
// // Make sure the closest lake is prioritised
// .with(lake_water_alt, near_center + 0.1 / (1.0 +
// river_edge_dist)); // .with_min(lake_water_alt);
//
river_water_level = river_water_level.with_min(
lake_water_alt
+ ((((river_dist - river_width * 0.5) as f32 + len - off)
.max(0.0))
/ len)
.powf(1.5)
* 32.0,
);
}
},
};
let river_edge_dist_unclamped = (river_dist - river_width * 0.5) as f32;
let water_dist = Some(
water_dist
.unwrap_or(river_edge_dist_unclamped)
.min(river_edge_dist_unclamped),
);
(
river_water_level,
in_river,
lake_water_level,
lake_dist,
water_dist,
unbounded_water_level,
)
},
(_, _) => (
river_water_level,
in_river,
lake_water_level,
lake_dist,
water_dist,
unbounded_water_level,
),
},
);
let unbounded_water_level = unbounded_water_level.eval_or(base_sea_level);
// Calculate a final, canonical altitude for the water in this column by
// combining and clamping the attributes we found while iterating over
// nearby bodies of water.
let water_level = match (
river_water_level.eval(),
lake_water_level
.eval()
.filter(|_| lake_dist <= 0.0 || in_river),
) {
(Some(r), Some(l)) => r.max(l),
(r, l) => r.or(l).unwrap_or(base_sea_level).max(unbounded_water_level),
}
.max(base_sea_level);
let riverless_alt = alt;
// What's going on here?
//
// Now that we've figured out the altitude of the water in this column, we can
// determine the altitude of the river banks. This initially appears
// somewhat backward (surely the river basin determines the water level?)
// but it is necessary to prevent backflows. Here, the surface of the water is
// king because we require global information to determine it without
// backflows. The river banks simply reflect the will of the water. We care
// much less about a river bank that's slightly rugged and irregular than we do
// about the surface of the water itself being rugged and irregular (and
// hence physically implausible). From that perspective, it makes sense
// that we determine river banks after the water level because it is the one
// that we are most at liberty to screw up.
//
// Similar to the iteration above, we perform a fold over nearby bodies of water
// and use the distance to the water to come up wight a weighted sum for
// the altitude. The way we determine this altitude differs somewhat
// between rivers, lakes, and the ocean and also whether we are *inside* said
// bodies of water or simply near their edge.
//
// As with the previous iteration, a lot of this code is extremely delicate and
// has been carefully designed to handle innumeral edge cases. Please
// test any changes to this code extremely well to avoid regressions: some
// edge cases are very rare indeed!
let alt = neighbor_river_data.into_iter().fold(
WeightedSum::default().with(riverless_alt, 1.0),
|alt, (river_chunk_idx, river_chunk, river, dist_info)| match (
river.river_kind,
dist_info,
) {
(
Some(kind),
Some((_, _, river_width, (river_t, (river_pos, _), downhill_chunk))),
) => {
// Distance from river center
let river_dist = river_pos.distance(wposf);
// Distance from edge of river
let river_edge_dist = (river_dist - river_width * 0.5).max(0.0) as f32;
let water_alt = match kind {
RiverKind::River { cross_section } => {
// Alt of river water *is* the alt of land
let river_water_alt = river_water_alt(
river_chunk.alt.max(river_chunk.water_alt),
downhill_chunk.alt.max(downhill_chunk.water_alt),
river_t as f32,
is_waterfall(river_chunk_idx, river_chunk, downhill_chunk),
);
Some((river_water_alt, cross_section.y, None))
},
RiverKind::Lake { .. } | RiverKind::Ocean => {
let lake_water_alt = if matches!(kind, RiverKind::Ocean) {
base_sea_level
} else {
river_water_alt(
river_chunk.alt.max(river_chunk.water_alt),
downhill_chunk.alt.max(downhill_chunk.water_alt),
river_t as f32,
is_waterfall(river_chunk_idx, river_chunk, downhill_chunk),
)
};
let depth = water_level
- Lerp::lerp(
riverless_alt.min(water_level),
water_level - 4.0,
0.5,
);
let min_alt = Lerp::lerp(
riverless_alt,
lake_water_alt,
((river_dist / (river_width * 0.5) - 0.5) * 2.0).clamped(0.0, 1.0)
as f32,
);
Some((
lake_water_alt,
// TODO: The depth given to us by the erosion code is technically
// correct, but it also
// looks terrible. Come up with a good solution to this.
/* river_width as f32 * 0.15 */
depth,
Some(min_alt),
))
},
};
const BANK_STRENGTH: f32 = 100.0;
if let Some((water_alt, water_depth, min_alt)) = water_alt {
if river_edge_dist <= 0.0 {
const MIN_DEPTH: f32 = 1.0;
let near_center = ((river_dist / (river_width * 0.5)) as f32)
.min(1.0)
.mul(std::f32::consts::PI)
.cos()
.add(1.0)
.mul(0.5);
// Waterfalls 'boost' the depth of the river to prevent artifacts. This
// is also necessary when rivers become very
// steep without explicitly being waterfalls.
// TODO: Come up with a more principled way of doing this without
// guessing magic numbers
let waterfall_boost =
if is_waterfall(river_chunk_idx, river_chunk, downhill_chunk) {
(river_chunk.alt - downhill_chunk.alt).max(0.0).powf(2.0)
* (1.0 - (river_t as f32 - 0.5).abs() * 2.0).powf(3.5)
/ 20.0
} else {
// Handle very steep rivers gracefully
(river_chunk.alt - downhill_chunk.alt).max(0.0) * 2.0
/ TerrainChunkSize::RECT_SIZE.x as f32
};
let riverbed_depth =
near_center * water_depth + MIN_DEPTH + waterfall_boost;
// Handle rivers debouching into the ocean nicely by 'flattening' their
// bottom
let riverbed_alt = (water_alt - riverbed_depth)
.max(riverless_alt.min(base_sea_level - MIN_DEPTH));
alt.with(
min_alt.unwrap_or(riverbed_alt).min(riverbed_alt),
near_center * BANK_STRENGTH,
)
.with_min(min_alt.unwrap_or(riverbed_alt).min(riverbed_alt))
} else {
const GORGE: f32 = 0.25;
const BANK_SCALE: f32 = 24.0;
// Weighting of this riverbank on nearby terrain (higher when closer to
// the river). This 'pulls' the riverbank
// toward the river's altitude to make sure that we get a smooth
// transition from normal terrain to the water.
let weight = Lerp::lerp(
BANK_STRENGTH
/ (1.0
+ (river_edge_dist - 3.0).max(0.0) * BANK_STRENGTH
/ BANK_SCALE),
0.0,
power((river_edge_dist / BANK_SCALE).clamped(0.0, 1.0) as f64, 2.0)
as f32,
);
let alt = alt.with(water_alt + GORGE, weight);
let alt = if matches!(kind, RiverKind::Ocean) {
alt
} else if (0.0..1.5).contains(&river_edge_dist)
&& water_dist.map_or(false, |d| d >= 0.0)
{
alt.with_max(water_alt + GORGE)
} else {
alt
};
if matches!(kind, RiverKind::Ocean) {
alt
} else if lake_dist > 0.0 && water_level < unbounded_water_level {
alt.with_max(unbounded_water_level)
} else {
alt
}
}
} else {
alt
}
},
(_, _) => alt,
},
);
let alt = alt
.eval_or(riverless_alt)
.max(if water_dist.map_or(true, |d| d > 0.0) {
// Terrain below sea level breaks things, so force it to never happen
base_sea_level + 0.5
} else {
f32::MIN
});
let riverless_alt_delta = (sim.gen_ctx.small_nz.get(
(wposf_turb.div(200.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64))).into_array(),
) as f32)
.clamp(-1.0, 1.0)
.abs()
.mul(3.0)
+ (sim.gen_ctx.small_nz.get(
(wposf_turb.div(400.0 * (32.0 / TerrainChunkSize::RECT_SIZE.x as f64)))
.into_array(),
) as f32)
.clamp(-1.0, 1.0)
.abs()
.mul(3.0);
// Cliffs
let cliff_factor = (alt
+ self.sim.gen_ctx.hill_nz.get(wposf.div(64.0).into_array()) as f32 * 8.0
+ self.sim.gen_ctx.hill_nz.get(wposf.div(350.0).into_array()) as f32 * 128.0)
.rem_euclid(200.0)
/ 64.0
- 1.0;
let cliff_scale =
((self.sim.gen_ctx.hill_nz.get(wposf.div(128.0).into_array()) as f32 * 1.5 + 0.75)
+ self.sim.gen_ctx.hill_nz.get(wposf.div(48.0).into_array()) as f32 * 0.1)
.clamped(0.0, 1.0)
.powf(2.0);
let cliff_height = sim.get_interpolated(wpos, |chunk| chunk.cliff_height)? * cliff_scale;
let cliff = if cliff_factor < 0.0 {
cliff_factor.abs().powf(1.5)
} else {
0.0
} * (1.0 - near_water * 3.0).max(0.0).powi(2);
let cliff_offset = cliff * cliff_height;
let riverless_alt_delta = riverless_alt_delta + (cliff - 0.5) * cliff_height;
let basement_sub_alt =
sim.get_interpolated_monotone(wpos, |chunk| chunk.basement.sub(chunk.alt))?;
let warp_factor = water_dist.map_or(1.0, |d| ((d - 0.0) / 64.0).clamped(0.0, 1.0));
// NOTE: To disable warp, uncomment this line.
// let warp_factor = 0.0;
let warp_factor = warp_factor * spawn_rules.max_warp;
let surface_rigidity = 1.0 - temp.max(0.0) * (1.0 - tree_density);
let surface_rigidity =
surface_rigidity.max(((basement_sub_alt + 3.0) / 1.5).clamped(0.0, 2.0));
let warp = ((marble_mid * 0.2 + marble * 0.8) * 2.0 - 1.0)
* (10.0 + rockiness * 15.0)
* gradient.unwrap_or(0.0).min(1.0)
* surface_rigidity
* warp_factor;
let mesa = 1.0f32
.min(30.0 / (1.0 + -basement_sub_alt.min(0.0)))
.min(1.0 - humidity * 4.0)
.min(temp)
.min(Lerp::lerp(-0.4, 1.0, gradient.unwrap_or(0.0)).max(0.0))
.max(0.0);
let riverless_alt_delta = Lerp::lerp(0.0, riverless_alt_delta, warp_factor);
let alt = alt + riverless_alt_delta + warp;
let basement = alt + basement_sub_alt;
// Adjust this to make rock placement better
let rock_density = rockiness
+ water_dist
.filter(|wd| *wd > 2.0)
.map(|wd| (1.0 - wd / 32.0).clamped(0.0, 1.0).powf(0.5) * 10.0)
.unwrap_or(0.0);
// Columns near water have a more stable temperature and so get pushed towards
// the average (0)
let temp = Lerp::lerp(
Lerp::lerp(temp, 0.0, 0.1),
temp,
water_dist
.map(|water_dist| water_dist / 20.0)
.unwrap_or(1.0)
.clamped(0.0, 1.0),
);
// Columns near water get a humidity boost
let humidity = Lerp::lerp(
Lerp::lerp(humidity, 1.0, 0.25),
humidity,
water_dist
.map(|water_dist| water_dist / 20.0)
.unwrap_or(1.0)
.clamped(0.0, 1.0),
);
// Colours
let Colors {
cold_grass,
warm_grass,
dark_grass,
wet_grass,
cold_stone,
hot_stone,
warm_stone,
beach_sand,
desert_sand,
snow,
snow_moss,
stone_col,
dirt_low,
dirt_high,
snow_high,
warm_stone_high,
grass_high,
tropical_high,
mesa_layers,
} = &index.colors.column;
let cold_grass = (*cold_grass).into();
let warm_grass = (*warm_grass).into();
let dark_grass = (*dark_grass).into();
let wet_grass = (*wet_grass).into();
let cold_stone = (*cold_stone).into();
let hot_stone = (*hot_stone).into();
let warm_stone: Rgb<f32> = (*warm_stone).into();
let beach_sand = (*beach_sand).into();
let desert_sand = (*desert_sand).into();
let snow = (*snow).into();
let snow_moss = (*snow_moss).into();
let stone_col = (*stone_col).into();
let dirt_low: Rgb<f32> = (*dirt_low).into();
let dirt_high = (*dirt_high).into();
let snow_high = (*snow_high).into();
let warm_stone_high = (*warm_stone_high).into();
let grass_high = (*grass_high).into();
let tropical_high = (*tropical_high).into();
let dirt = Lerp::lerp(dirt_low, dirt_high, marble_mixed);
let tundra = Lerp::lerp(snow, snow_high, 0.4 + marble_mixed * 0.6);
let dead_tundra = Lerp::lerp(warm_stone, warm_stone_high, marble_mixed);
let cliff = Rgb::lerp(cold_stone, hot_stone, marble_mixed);
let grass = Rgb::lerp(
cold_grass,
warm_grass,
marble_mixed
.sub(0.5)
.add(1.0.sub(humidity).mul(0.5))
.powf(1.5),
);
let snow_moss = Rgb::lerp(snow_moss, cold_grass, 0.4 + marble_mixed.powf(1.5) * 0.6);
let moss = Rgb::lerp(dark_grass, cold_grass, marble_mixed.powf(1.5));
let rainforest = Rgb::lerp(wet_grass, warm_grass, marble_mixed.powf(1.5));
let sand = Rgb::lerp(beach_sand, desert_sand, marble_mixed);
let tropical = Rgb::lerp(
Rgb::lerp(
grass,
grass_high,
marble_small
.sub(0.5)
.mul(0.2)
.add(0.75.mul(1.0.sub(humidity)))
.powf(0.667),
),
tropical_high,
marble_mixed.powf(1.5).sub(0.5).mul(4.0),
);
// For below desert humidity, we are always sand or rock, depending on altitude
// and temperature.
let ground = Lerp::lerp(
Lerp::lerp(
dead_tundra,
sand,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.desert_temp.sub(CONFIG.snow_temp))
.mul(0.5),
),
dirt,
humidity
.sub(CONFIG.desert_hum)
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
.mul(1.0),
);
let sub_surface_color = Lerp::lerp(cliff, ground, alt.sub(basement).mul(0.25));
// From desert to forest humidity, we go from tundra to dirt to grass to moss to
// sand, depending on temperature.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
tundra,
// snow_temp to temperate_temp
dirt,
temp.sub(CONFIG.snow_temp)
.div(CONFIG.temperate_temp.sub(CONFIG.snow_temp))
/*.sub((marble - 0.5) * 0.05)
.mul(256.0)*/
.mul(1.0),
),
// temperate_temp to tropical_temp
grass,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
moss,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(1.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
),
humidity
.sub(CONFIG.desert_hum)
.div(CONFIG.forest_hum.sub(CONFIG.desert_hum))
.mul(1.25),
);
// From forest to jungle humidity, we go from snow to dark grass to grass to
// tropics to sand depending on temperature.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
snow_moss,
// temperate_temp to tropical_temp
grass,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
tropical,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(1.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
),
humidity
.sub(CONFIG.forest_hum)
.div(CONFIG.jungle_hum.sub(CONFIG.forest_hum))
.mul(1.0),
);
// From jungle humidity upwards, we go from snow to grass to rainforest to
// tropics to sand.
let ground = Rgb::lerp(
ground,
Rgb::lerp(
Rgb::lerp(
Rgb::lerp(
snow_moss,
// temperate_temp to tropical_temp
rainforest,
temp.sub(CONFIG.temperate_temp)
.div(CONFIG.tropical_temp.sub(CONFIG.temperate_temp))
.mul(4.0),
),
// tropical_temp to desert_temp
tropical,
temp.sub(CONFIG.tropical_temp)
.div(CONFIG.desert_temp.sub(CONFIG.tropical_temp))
.mul(4.0),
),
// above desert_temp
sand,
temp.sub(CONFIG.desert_temp)
.div(1.0 - CONFIG.desert_temp)
.mul(4.0),
),
humidity.sub(CONFIG.jungle_hum).mul(1.0),
);
// Snow covering
let thematic_snow = calendar.map_or(false, |c| c.is_event(CalendarEvent::Christmas));
let snow_factor = temp
.sub(if thematic_snow {
CONFIG.tropical_temp
} else {
CONFIG.snow_temp
})
.max(-humidity.sub(CONFIG.desert_hum))
.mul(4.0)
.max(-0.25)
// 'Simulate' avalanches moving snow from areas with high gradients to areas with high flux
.add((gradient.unwrap_or(0.0) - 0.5).max(0.0) * 0.1)
// .add(-flux * 0.003 * gradient.unwrap_or(0.0))
.add(((marble - 0.5) / 0.5) * 0.25)
.add(((marble_mid - 0.5) / 0.5) * 0.125)
.add(((marble_small - 0.5) / 0.5) * 0.0625);
let snow_cover = snow_factor <= 0.0;
let (alt, ground, sub_surface_color) = if snow_cover && alt > water_level {
// Allow snow cover.
(
alt + 1.0 - snow_factor.max(0.0),
Rgb::lerp(snow, ground, snow_factor),
Lerp::lerp(sub_surface_color, ground, alt.sub(basement).mul(0.15)),
)
} else {
(alt, ground, sub_surface_color)
};
// Make river banks not have grass
let ground = water_dist
.map(|wd| Lerp::lerp(sub_surface_color, ground, (wd / 3.0).clamped(0.0, 1.0)))
.unwrap_or(ground);
let (sub_surface_color, ground, alt, basement) = if mesa > 0.0 {
let marble_big = (sim.gen_ctx.hill_nz.get((wposf3d.div(128.0)).into_array()) as f32)
.mul(0.75)
.add(1.0)
.mul(0.5);
let cliff_scale = 130.0;
let cliff2_scale = 50.0;
let cliff_offset = |scale: f32| {
let x = (alt * 0.95 * (1.0 / scale) + marble_mixed * 0.07).fract() - 0.75;
if x > 0.0 { x * 3.0 * scale } else { -x * scale }
};
let mesa_alt = alt
+ Lerp::lerp(
cliff_offset(cliff_scale),
cliff_offset(cliff2_scale),
((marble_big - 0.5) * 3.0 + (marble_mixed - 0.5) * 0.0).clamped(-0.5, 0.5)
+ 0.5,
) * 0.9;
let alt = Lerp::lerp(alt, mesa_alt, mesa.powf(2.0) * warp_factor);
let idx = alt * 0.35 + (alt * 0.35 + marble * 10.0).sin();
let mesa_color = Lerp::lerp(
Rgb::from(
mesa_layers
.choose(&mut RandomPerm::new(idx as u32))
.copied()
.unwrap_or_default(),
),
Rgb::from(
mesa_layers
.choose(&mut RandomPerm::new(idx as u32 + 1))
.copied()
.unwrap_or_default(),
),
idx.fract(),
);
let sub_surface_color = Lerp::lerp(sub_surface_color, mesa_color, mesa.powf(0.25));
let basement = Lerp::lerp(
basement,
alt,
(mesa * (marble_mixed - 0.35) * 1.5).clamped(0.0, 1.0) * warp_factor,
);
(sub_surface_color, ground, alt, basement)
} else {
(sub_surface_color, ground, alt, basement)
};
// Ground under thick trees should be receive less sunlight and so often become
// dirt
let ground = Lerp::lerp(ground, sub_surface_color, marble_mid * tree_density);
let path = if spawn_rules.paths {
sim.get_nearest_path(wpos)
} else {
None
};
let cave = sim.get_nearest_cave(wpos);
let ice_depth = if snow_factor < -0.25
&& water_vel.magnitude_squared() < (0.1f32 + marble_mid * 0.2).powi(2)
{
let cliff = (sim.gen_ctx.hill_nz.get((wposf3d.div(180.0)).into_array()) as f32)
.add((marble_mid - 0.5) * 0.2)
.abs()
.powi(3)
.mul(32.0);
let cliff_ctrl = (sim.gen_ctx.hill_nz.get((wposf3d.div(128.0)).into_array()) as f32)
.sub(0.4)
.add((marble_mid - 0.5) * 0.2)
.mul(32.0)
.clamped(0.0, 1.0);
(((1.0 - Lerp::lerp(marble, Lerp::lerp(marble_mid, marble_small, 0.25), 0.5)) * 5.0
- 1.5)
.max(0.0)
+ cliff * cliff_ctrl)
.min((water_level - alt).max(0.0))
} else {
0.0
};
Some(ColumnSample {
alt,
riverless_alt,
basement,
chaos,
water_level,
warp_factor,
surface_color: Rgb::lerp(
sub_surface_color,
Rgb::lerp(
// Beach
Rgb::lerp(cliff, sand, alt.sub(basement).mul(0.25)),
// Land
ground,
((alt - base_sea_level) / 12.0).clamped(0.0, 1.0),
),
surface_veg,
),
sub_surface_color,
// No growing directly on bedrock.
// And, no growing on sites that don't want them TODO: More precise than this when we
// apply trees as a post-processing layer
tree_density: if spawn_rules.trees {
Lerp::lerp(0.0, tree_density, alt.sub(2.0).sub(basement).mul(0.5))
} else {
0.0
},
forest_kind: sim_chunk.forest_kind,
marble,
marble_mid,
marble_small,
rock_density: if spawn_rules.trees { rock_density } else { 0.0 },
temp,
humidity,
spawn_rate,
stone_col,
water_dist,
gradient,
path,
cave,
snow_cover,
cliff_offset,
cliff_height,
water_vel,
ice_depth,
chunk: sim_chunk,
})
}
}
#[derive(Clone)]
pub struct ColumnSample<'a> {
pub alt: f32,
pub riverless_alt: f32,
pub basement: f32,
pub chaos: f32,
pub water_level: f32,
pub warp_factor: f32,
pub surface_color: Rgb<f32>,
pub sub_surface_color: Rgb<f32>,
pub tree_density: f32,
pub forest_kind: ForestKind,
pub marble: f32,
pub marble_mid: f32,
pub marble_small: f32,
pub rock_density: f32,
pub temp: f32,
pub humidity: f32,
pub spawn_rate: f32,
pub stone_col: Rgb<u8>,
pub water_dist: Option<f32>,
pub gradient: Option<f32>,
pub path: Option<(f32, Vec2<f32>, Path, Vec2<f32>)>,
pub cave: Option<(f32, Vec2<f32>, Cave, Vec2<f32>)>,
pub snow_cover: bool,
pub cliff_offset: f32,
pub cliff_height: f32,
pub water_vel: Vec3<f32>,
pub ice_depth: f32,
pub chunk: &'a SimChunk,
}
impl ColumnSample<'_> {
pub fn get_info(&self) -> ColInfo {
ColInfo {
alt: self.alt,
basement: self.basement,
cliff_offset: self.cliff_offset,
cliff_height: self.cliff_height,
}
}
}
// For a version of ColumnSample that can easily be moved around. Feel free to
// add non reference fields as needed.
#[derive(Clone, Default)]
pub struct ColInfo {
pub alt: f32,
pub basement: f32,
pub cliff_offset: f32,
pub cliff_height: f32,
}