1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
use super::{diffusion, downhill, uphill};
use crate::{config::CONFIG, util::RandomField};
use common::{
    terrain::{
        neighbors, uniform_idx_as_vec2, vec2_as_uniform_idx, MapSizeLg, TerrainChunkSize,
        NEIGHBOR_DELTA,
    },
    vol::RectVolSize,
};
use tracing::{debug, error, info, warn};
// use faster::*;
use itertools::izip;
use noise::NoiseFn;
use num::{Float, Zero};
use ordered_float::{FloatCore, NotNan};
use rayon::prelude::*;
use std::{
    cmp::{Ordering, Reverse},
    collections::BinaryHeap,
    fmt, mem,
    time::Instant,
};
use vek::*;

pub type Alt = f64;
pub type Compute = f64;
pub type Computex8 = [Compute; 8];

/* code used by sharp in future
/// Compute the water flux at all chunks, given a list of chunk indices sorted
/// by increasing height.
pub fn get_drainage(
    map_size_lg: MapSizeLg,
    newh: &[u32],
    downhill: &[isize],
    _boundary_len: usize,
) -> Box<[f32]> {
    // FIXME: Make the below work.  For now, we just use constant flux.
    // Initially, flux is determined by rainfall.  We currently treat this as the
    // same as humidity, so we just use humidity as a proxy.  The total flux
    // across the whole map is normalize to 1.0, and we expect the average flux
    // to be 0.5.  To figure out how far from normal any given chunk is, we use
    // its logit. NOTE: If there are no non-boundary chunks, we just set
    // base_flux to 1.0; this should still work fine because in that case
    // there's no erosion anyway. let base_flux = 1.0 / ((map_size_lg.chunks_len())
    // as f32);
    let base_flux = 1.0;
    let mut flux = vec![base_flux; map_size_lg.chunks_len()].into_boxed_slice();
    newh.iter().rev().for_each(|&chunk_idx| {
        let chunk_idx = chunk_idx as usize;
        let downhill_idx = downhill[chunk_idx];
        if downhill_idx >= 0 {
            flux[downhill_idx as usize] += flux[chunk_idx];
        }
    });
    flux
}
*/

/// Compute the water flux at all chunks for multiple receivers, given a list of
/// chunk indices sorted by increasing height and weights for each receiver.
pub fn get_multi_drainage(
    map_size_lg: MapSizeLg,
    mstack: &[u32],
    mrec: &[u8],
    mwrec: &[Computex8],
    _boundary_len: usize,
) -> Box<[Compute]> {
    // FIXME: Make the below work.  For now, we just use constant flux.
    // Initially, flux is determined by rainfall.  We currently treat this as the
    // same as humidity, so we just use humidity as a proxy.  The total flux
    // across the whole map is normalize to 1.0, and we expect the average flux
    // to be 0.5.  To figure out how far from normal any given chunk is, we use
    // its logit. NOTE: If there are no non-boundary chunks, we just set
    // base_flux to 1.0; this should still work fine because in that case
    // there's no erosion anyway.
    let base_area = 1.0;
    let mut area = vec![base_area; map_size_lg.chunks_len()].into_boxed_slice();
    mstack.iter().for_each(|&ij| {
        let ij = ij as usize;
        let wrec_ij = &mwrec[ij];
        let area_ij = area[ij];
        mrec_downhill(map_size_lg, mrec, ij).for_each(|(k, ijr)| {
            area[ijr] += area_ij * wrec_ij[k];
        });
    });
    area
    /*
      a=dx*dy*precip
      do ij=1,nn
        ijk=mstack(ij)
        do k =1,mnrec(ijk)
          a(mrec(k,ijk))=a(mrec(k,ijk))+a(ijk)*mwrec(k,ijk)
        enddo
      enddo
    */
}

/// Kind of water on this tile.
#[derive(Clone, Copy, Debug, PartialEq)]
pub enum RiverKind {
    Ocean,
    Lake {
        /// In addition to a downhill node (pointing to, eventually, the bottom
        /// of the lake), each lake also has a "pass" that identifies
        /// the direction out of which water should flow from this lake
        /// if it is minimally flooded.  While some lakes may be too full for
        /// this to be the actual pass used by their enclosing lake, we
        /// still use this as a way to make sure that lake connections
        /// to rivers flow in the correct direction.
        neighbor_pass_pos: Vec2<i32>,
    },
    /// River should be maximal.
    River {
        /// Dimensions of the river's cross-sectional area, as m × m (rivers are
        /// approximated as an open rectangular prism in the direction
        /// of the velocity vector).
        cross_section: Vec2<f32>,
    },
}

impl RiverKind {
    pub fn is_ocean(&self) -> bool { matches!(*self, RiverKind::Ocean) }

    pub fn is_river(&self) -> bool { matches!(*self, RiverKind::River { .. }) }

    pub fn is_lake(&self) -> bool { matches!(*self, RiverKind::Lake { .. }) }
}

impl PartialOrd for RiverKind {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        match (*self, *other) {
            (RiverKind::Ocean, RiverKind::Ocean) => Some(Ordering::Equal),
            (RiverKind::Ocean, _) => Some(Ordering::Less),
            (_, RiverKind::Ocean) => Some(Ordering::Greater),
            (RiverKind::Lake { .. }, RiverKind::Lake { .. }) => None,
            (RiverKind::Lake { .. }, _) => Some(Ordering::Less),
            (_, RiverKind::Lake { .. }) => Some(Ordering::Greater),
            (RiverKind::River { .. }, RiverKind::River { .. }) => None,
        }
    }
}

/// From velocity and cross_section we can calculate the volumetric flow rate,
/// as the cross-sectional area times the velocity.
///
/// TODO: we might choose to include a curve for the river, as long as it didn't
/// allow it to cross more than one neighboring chunk away.  For now we defer
/// this to rendering time.
///
/// NOTE: This structure is 57 (or more likely 64) bytes, which is kind of big.
#[derive(Clone, Debug, Default)]
pub struct RiverData {
    /// A velocity vector (in m / minute, i.e. voxels / second from a game
    /// perspective).
    ///
    /// TODO: To represent this in a better-packed way, use u8s instead (as
    /// "f8s").
    pub(crate) velocity: Vec3<f32>,
    /// The computed derivative for the segment of river starting at this chunk
    /// (and flowing downhill).  Should be 0 at endpoints.  For rivers with
    /// more than one incoming segment, we weight the derivatives by flux
    /// (cross-sectional area times velocity) which is correlated
    /// with mass / second; treating the derivative as "velocity" with respect
    /// to length along the river, we treat the weighted sum of incoming
    /// splines as the "momentum", and can divide it by the total incoming
    /// mass as a way to find the velocity of the center of mass.  We can
    /// then use this derivative to find a "tangent" for the incoming river
    /// segment at this point, and as the linear part of the interpolating
    /// spline at this point.
    ///
    /// Note that we aren't going to have completely smooth curves here anyway,
    /// so we will probably end up applying a dampening factor as well
    /// (maybe based on the length?) to prevent extremely wild oscillations.
    pub(crate) spline_derivative: Vec2<f32>,
    /// If this chunk is part of a river, this should be true.  We can't just
    /// compute this from the cross section because once a river becomes
    /// visible, we want it to stay visible until it reaches its sink.
    pub river_kind: Option<RiverKind>,
    /// We also have a second record for recording any rivers in nearby chunks
    /// that manage to intersect this chunk, though this is unlikely to
    /// happen in current gameplay.  This is because river areas are allowed
    /// to cross arbitrarily many chunk boundaries, if they are wide enough.
    /// In such cases we may choose to render the rivers as particularly deep in
    /// those places.
    pub(crate) neighbor_rivers: Vec<u32>,
}

impl RiverData {
    pub fn is_ocean(&self) -> bool {
        self.river_kind
            .as_ref()
            .map(RiverKind::is_ocean)
            .unwrap_or(false)
    }

    pub fn is_river(&self) -> bool {
        self.river_kind
            .as_ref()
            .map(RiverKind::is_river)
            .unwrap_or(false)
    }

    pub fn is_lake(&self) -> bool {
        self.river_kind
            .as_ref()
            .map(RiverKind::is_lake)
            .unwrap_or(false)
    }

    pub fn near_river(&self) -> bool { self.is_river() || !self.neighbor_rivers.is_empty() }

    pub fn near_water(&self) -> bool { self.near_river() || self.is_lake() || self.is_ocean() }
}

/// Draw rivers and assign them heights, widths, and velocities.  Take some
/// liberties with the constant factors etc. in order to make it more likely
/// that we draw rivers at all.
pub fn get_rivers<F: fmt::Debug + Float + Into<f64>, G: Float + Into<f64>>(
    map_size_lg: MapSizeLg,
    continent_scale_hack: f64,
    newh: &[u32],
    water_alt: &[F],
    downhill: &[isize],
    indirection: &[i32],
    drainage: &[G],
) -> Box<[RiverData]> {
    // For continuity-preserving quadratic spline interpolation, we (appear to) need
    // to build up the derivatives from the top down.  Fortunately this
    // computation seems tractable.

    let mut rivers = vec![RiverData::default(); map_size_lg.chunks_len()].into_boxed_slice();
    let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
    // (Roughly) area of a chunk, times minutes per second.
    // NOTE: Clearly, this should "actually" be 1/60 (or maybe 1/64, if you want to
    // retain powers of 2).
    //
    // But since we want rivers to form more often than they do in real life, we use
    // this as a way to control the frequency of river formation.  As grid_scale
    // increases, mins_per_sec should decrease, until it hits 1 / 60 or 1/ 64.
    // For example, if grid_scale is multiplied by 4, mins_per_sec should be
    // multiplied by 1 / (4.0 * 4.0).
    let mins_per_sec = 1.0 / (continent_scale_hack * continent_scale_hack)/*1.0 / 16.0*//*1.0 / 64.0*/;
    let chunk_area_factor = neighbor_coef.x * neighbor_coef.y * mins_per_sec;
    // NOTE: This technically makes us discontinuous, so we should be cautious about
    // using this.
    let derivative_divisor = 1.0;
    newh.iter().rev().for_each(|&chunk_idx| {
        let chunk_idx = chunk_idx as usize;
        let downhill_idx = downhill[chunk_idx];
        if downhill_idx < 0 {
            // We are in the ocean.
            debug_assert!(downhill_idx == -2);
            rivers[chunk_idx].river_kind = Some(RiverKind::Ocean);
            return;
        }
        let downhill_idx = downhill_idx as usize;
        let downhill_pos = uniform_idx_as_vec2(map_size_lg, downhill_idx);
        let dxy = (downhill_pos - uniform_idx_as_vec2(map_size_lg, chunk_idx)).map(|e| e as f64);
        let neighbor_dim = neighbor_coef * dxy;
        // First, we calculate the river's volumetric flow rate.
        let chunk_drainage = drainage[chunk_idx].into();
        // Volumetric flow rate is just the total drainage area to this chunk, times
        // rainfall height per chunk per minute, times minutes per second
        // (needed in order to use this as a m³ volume).
        // TODO: consider having different rainfall rates (and including this
        // information in the computation of drainage).
        let volumetric_flow_rate =
            chunk_drainage * chunk_area_factor * CONFIG.rainfall_chunk_rate as f64;
        let downhill_drainage = drainage[downhill_idx].into();

        // We know the drainage to the downhill node is just chunk_drainage - 1.0 (the
        // amount of rainfall this chunk is said to get), so we don't need to
        // explicitly remember the incoming mass.  How do we find a slope for
        // endpoints where there is no incoming data? Currently, we just assume
        // it's set to 0.0. TODO: Fix this when we add differing amounts of
        // rainfall.
        let incoming_drainage = downhill_drainage - 1.0;
        let get_river_spline_derivative =
            |neighbor_dim: Vec2<f64>, spline_derivative: Vec2<f32>| {
                // "Velocity of center of mass" of splines of incoming flows.
                let river_prev_slope = spline_derivative.map(|e| e as f64);
                // NOTE: We need to make sure the slope doesn't get *too* crazy.
                // ((dpx - cx) - 4 * MAX).abs() = bx
                // NOTE: This will fail if the distance between chunks in any direction
                // is exactly TerrainChunkSize::RECT * 4.0, but hopefully this should not be
                // possible. NOTE: This isn't measuring actual distance, you can
                // go farther on diagonals.
                let max_deriv = neighbor_dim - neighbor_coef * 2.0 * 2.0.sqrt();
                let extra_divisor = river_prev_slope
                    .map2(max_deriv, |e, f| (e / f).abs())
                    .reduce_partial_max();
                // Set up the river's spline derivative.  For each incoming river at pos with
                // river_spline_derivative bx, we can compute our interpolated slope as:
                //   d_x = 2 * (chunk_pos - pos - bx) + bx
                //       = 2 * (chunk_pos - pos) - bx
                //
                // which is exactly twice what was weighted by uphill nodes to get our
                // river_spline_derivative in the first place.
                //
                // NOTE: this probably implies that the distance shouldn't be normalized, since
                // the distances aren't actually equal between x and y... we'll
                // see what happens.
                (if extra_divisor > 1.0 {
                    river_prev_slope / extra_divisor
                } else {
                    river_prev_slope
                })
                .map(|e| e as f32)
            };

        let river = &rivers[chunk_idx];
        let river_spline_derivative =
            get_river_spline_derivative(neighbor_dim, river.spline_derivative);

        let indirection_idx = indirection[chunk_idx];
        // Find the lake we are flowing into.
        let lake_idx = if indirection_idx < 0 {
            // If we're a lake bottom, our own indirection is negative.
            let pass_idx = (-indirection_idx) as usize;
            // NOTE: Must exist since this lake had a downhill in the first place.
            let neighbor_pass_idx = downhill[pass_idx] as usize/*downhill_idx*/;
            let lake_neighbor_pass = &mut rivers[neighbor_pass_idx];
            // We definitely shouldn't have encountered this yet!
            debug_assert!(lake_neighbor_pass.velocity == Vec3::zero());
            // TODO: Rethink making the lake neighbor pass always a river or lake, no matter
            // how much incoming water there is?  Sometimes it looks weird
            // having a river emerge from a tiny pool.
            lake_neighbor_pass.river_kind = Some(RiverKind::River {
                cross_section: Vec2::default(),
            });
            chunk_idx
        } else {
            indirection_idx as usize
        };

        // Find the pass this lake is flowing into (i.e. water at the lake bottom gets
        // pushed towards the point identified by pass_idx).
        let pass_idx = if downhill[lake_idx] < 0 {
            // Flows into nothing, so this lake is its own pass.
            lake_idx
        } else {
            (-indirection[lake_idx]) as usize
        };

        // Add our spline derivative to the downhill river (weighted by the chunk's
        // drainage). NOTE: Don't add the spline derivative to the lake side of
        // the pass for our own lake, because we don't want to preserve weird
        // curvature from before we hit the lake in the outflowing river (this
        // will not apply to one-chunk lakes, which are their own pass).
        if pass_idx != downhill_idx {
            // TODO: consider utilizing height difference component of flux as well;
            // currently we just discard it in figuring out the spline's slope.
            let downhill_river = &mut rivers[downhill_idx];
            let weighted_flow = (neighbor_dim * 2.0 - river_spline_derivative.map(|e| e as f64))
                / derivative_divisor
                * chunk_drainage
                / incoming_drainage;
            downhill_river.spline_derivative += weighted_flow.map(|e| e as f32);
        }

        let neighbor_pass_idx = downhill[pass_idx];
        // Find our own water height.
        let chunk_water_alt = water_alt[chunk_idx];
        if neighbor_pass_idx >= 0 {
            // We may be a river.  But we're not sure yet, since we still could be
            // underwater.  Check the lake height and see if our own water height is within
            // ε of it.
            let lake_water_alt = water_alt[lake_idx];
            if chunk_water_alt == lake_water_alt {
                // Not a river.
                // Check whether we we are the lake side of the pass.
                // NOTE: Safe because this is a lake.
                let (neighbor_pass_pos, river_spline_derivative) = if pass_idx == chunk_idx {
                    // This is a pass, so set our flow direction to point to the neighbor pass
                    // rather than downhill.
                    // NOTE: Safe because neighbor_pass_idx >= 0.
                    (
                        uniform_idx_as_vec2(map_size_lg, downhill_idx),
                        river_spline_derivative,
                    )
                } else {
                    // Try pointing towards the lake side of the pass.
                    (
                        uniform_idx_as_vec2(map_size_lg, pass_idx),
                        river_spline_derivative,
                    )
                };
                let lake = &mut rivers[chunk_idx];
                lake.spline_derivative = river_spline_derivative;
                lake.river_kind = Some(RiverKind::Lake {
                    neighbor_pass_pos: neighbor_pass_pos
                        * TerrainChunkSize::RECT_SIZE.map(|e| e as i32),
                });
                return;
            }
        // Otherwise, we must be a river.
        } else {
            // We are flowing into the ocean.
            debug_assert!(neighbor_pass_idx == -2);
            // But we are not the ocean, so we must be a river.
        }
        // Now, we know we are a river *candidate*.  We still don't know whether we are
        // actually a river, though.  There are two ways for that to happen:
        // (i) We are already a river.
        // (ii) Using the Gauckler–Manning–Strickler formula for cross-sectional
        //      average velocity of water, we establish that the river can be
        //      "big enough" to appear on the Veloren map.
        //
        // This is very imprecise, of course, and (ii) may (and almost certainly will)
        // change over time.
        //
        // In both cases, we preemptively set our child to be a river, to make sure we
        // have an unbroken stream.  Also in both cases, we go to the effort of
        // computing an effective water velocity vector and cross-sectional
        // dimensions, as well as figuring out the derivative of our
        // interpolating spline (since this percolates through the whole river
        // network).
        let downhill_water_alt = water_alt[downhill_idx];
        let neighbor_distance = neighbor_dim.magnitude();
        let dz = (downhill_water_alt - chunk_water_alt).into();
        let slope = dz.abs() / neighbor_distance;
        if slope == 0.0 {
            // This is not a river--how did this even happen?
            let pass_idx = (-indirection_idx) as usize;
            error!(
                "Our chunk (and downhill, lake, pass, neighbor_pass): {:?} (to {:?}, in {:?} via \
                 {:?} to {:?}), chunk water alt: {:?}, lake water alt: {:?}",
                uniform_idx_as_vec2(map_size_lg, chunk_idx),
                uniform_idx_as_vec2(map_size_lg, downhill_idx),
                uniform_idx_as_vec2(map_size_lg, lake_idx),
                uniform_idx_as_vec2(map_size_lg, pass_idx),
                if neighbor_pass_idx >= 0 {
                    Some(uniform_idx_as_vec2(map_size_lg, neighbor_pass_idx as usize))
                } else {
                    None
                },
                water_alt[chunk_idx],
                water_alt[lake_idx]
            );
            panic!("Should this happen at all?");
        }
        let slope_sqrt = slope.sqrt();
        // Now, we compute a quantity that is proportional to the velocity of the chunk,
        // derived from the Manning formula, equal to
        // volumetric_flow_rate / slope_sqrt * CONFIG.river_roughness.
        let almost_velocity = volumetric_flow_rate / slope_sqrt * CONFIG.river_roughness as f64;
        // From this, we can figure out the width of the chunk if we know the height.
        // For now, we hardcode the height to 0.5, but it should almost
        // certainly be much more complicated than this.
        // let mut height = 0.5f32;
        // We approximate the river as a rectangular prism.  Theoretically, we need to
        // solve the following quintic equation to determine its width from its
        // height:
        //
        // h^5 * w^5 = almost_velocity^3 * (w + 2 * h)^2.
        //
        // This is because one of the quantities in the Manning formula (the unknown) is
        // R_h = (area of cross-section / h)^(2/3).
        //
        // Unfortunately, quintic equations do not in general have algebraic solutions,
        // and it's not clear (to me anyway) that this one does in all cases.
        //
        // In practice, for high ratios of width to height, we can approximate the
        // rectangular prism's perimeter as equal to its width, so R_h as equal
        // to height.  This greatly simplifies the calculation.  For simplicity,
        // we do this even for low ratios of width to height--I found that for
        // most real rivers, at least big ones, this approximation is
        // "good enough."  We don't need to be *that* realistic :P
        //
        // NOTE: Derived from a paper on estimating river width.
        let mut width = 5.0
            * (CONFIG.river_width_to_depth as f64
                * (CONFIG.river_width_to_depth as f64 + 2.0).powf(2.0 / 3.0))
            .powf(3.0 / 8.0)
            * volumetric_flow_rate.powf(3.0 / 8.0)
            * slope.powf(-3.0 / 16.0)
            * (CONFIG.river_roughness as f64).powf(3.0 / 8.0);
        width = width.max(0.0);

        let mut height = if width == 0.0 {
            CONFIG.river_min_height as f64
        } else {
            (almost_velocity / width).powf(3.0 / 5.0)
        };

        // We can now weight the river's drainage by its direction, which we use to help
        // improve the slope of the downhill node.
        let river_direction = Vec3::new(neighbor_dim.x, neighbor_dim.y, dz.signum() * dz);

        // Now, we can check whether this is "really" a river.
        // Currently, we just check that width and height are at least 0.5 and
        // CONFIG.river_min_height.
        let river = &rivers[chunk_idx];
        let is_river = river.is_river() || width >= 0.5 && height >= CONFIG.river_min_height as f64;
        let downhill_river = &mut rivers[downhill_idx];

        if is_river {
            // Provisionally make the downhill chunk a river as well.
            downhill_river.river_kind = Some(RiverKind::River {
                cross_section: Vec2::default(),
            });

            // Additionally, if the cross-sectional area for this river exceeds the max
            // river width, the river is overflowing the two chunks adjacent to
            // it, which we'd prefer to avoid since only its two immediate
            // neighbors (orthogonal to the downhill direction) are guaranteed
            // uphill of it. Solving this properly most likely requires
            // modifying the erosion model to take channel width into account,
            // which is a formidable task that likely requires rethinking the
            // current grid-based erosion model (or at least, requires tracking some
            // edges that aren't implied by the grid graph).  For now, we will solve this
            // problem by making the river deeper when it hits the max width,
            // until it consumes all the available energy in this part of the
            // river.
            let max_width = TerrainChunkSize::RECT_SIZE.x as f64 * CONFIG.river_max_width as f64;
            if width > max_width {
                width = max_width;
                height = (almost_velocity / width).powf(3.0 / 5.0);
            }
        }
        // Now we can compute the river's approximate velocity magnitude as well, as
        let velocity_magnitude =
            1.0 / CONFIG.river_roughness as f64 * height.powf(2.0 / 3.0) * slope_sqrt;

        // Set up the river's cross-sectional area.
        let cross_section = Vec2::new(width as f32, height as f32);
        // Set up the river's velocity vector.
        let mut velocity = river_direction;
        velocity.normalize();
        velocity *= velocity_magnitude;

        let river = &mut rivers[chunk_idx];
        // NOTE: Not trying to do this more cleverly because we want to keep the river's
        // neighbors. TODO: Actually put something in the neighbors.
        river.velocity = velocity.map(|e| e as f32);
        river.spline_derivative = river_spline_derivative;
        river.river_kind = if is_river {
            Some(RiverKind::River { cross_section })
        } else {
            None
        };
    });
    rivers
}

/// Precompute the maximum slope at all points.
///
/// TODO: See if allocating in advance is worthwhile.
fn get_max_slope(
    map_size_lg: MapSizeLg,
    h: &[Alt],
    rock_strength_nz: &(impl NoiseFn<f64, 3> + Sync),
    height_scale: impl Fn(usize) -> Alt + Sync,
) -> Box<[f64]> {
    let min_max_angle = (15.0 / 360.0 * 2.0 * std::f64::consts::PI).tan();
    let max_max_angle = (60.0 / 360.0 * 2.0 * std::f64::consts::PI).tan();
    let max_angle_range = max_max_angle - min_max_angle;
    h.par_iter()
        .enumerate()
        .map(|(posi, &z)| {
            let wposf = uniform_idx_as_vec2(map_size_lg, posi).map(|e| e as f64)
                * TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
            let height_scale = height_scale(posi);
            let wposz = z / height_scale;
            // Normalized to be between 6 and and 54 degrees.
            let div_factor = (2.0 * TerrainChunkSize::RECT_SIZE.x as f64) / 8.0;
            let rock_strength = rock_strength_nz.get([wposf.x, wposf.y, wposz * div_factor]);
            let rock_strength = rock_strength.clamp(-1.0, 1.0) * 0.5 + 0.5;
            // Logistic regression.  Make sure x ∈ (0, 1).
            let logit = |x: f64| x.ln() - (-x).ln_1p();
            // 0.5 + 0.5 * tanh(ln(1 / (1 - 0.1) - 1) / (2 * (sqrt(3)/pi)))
            let logistic_2_base = 3.0f64.sqrt() * std::f64::consts::FRAC_2_PI;
            // Assumes μ = 0, σ = 1
            let logistic_cdf = |x: f64| (x / logistic_2_base).tanh() * 0.5 + 0.5;

            // We do log-odds against center, so that our log odds are 0 when x = 0.25,
            // lower when x is lower, and higher when x is higher.
            //
            // (NOTE: below sea level, we invert it).
            //
            // TODO: Make all this stuff configurable... but honestly, it's so complicated
            // that I'm not sure anyone would be able to usefully tweak them on
            // a per-map basis?  Plus it's just a hacky heuristic anyway.
            let center = 0.4;
            let dmin = center - 0.05;
            let dmax = center + 0.05;
            let log_odds = |x: f64| logit(x) - logit(center);
            let rock_strength = logistic_cdf(
                1.0 * logit(rock_strength.clamp(1e-7, 1.0f64 - 1e-7))
                    + 1.0
                        * log_odds(
                            (wposz / CONFIG.mountain_scale as f64)
                                .abs()
                                .clamp(dmin, dmax),
                        ),
            );
            // NOTE: If you want to disable varying rock strength entirely, uncomment  this
            // line. let max_slope = 3.0.sqrt() / 3.0;
            rock_strength * max_angle_range + min_max_angle //max_slope
        })
        .collect::<Vec<_>>()
        .into_boxed_slice()
}

// simd alternative
#[cfg(not(feature = "simd"))]
#[derive(Copy, Clone)]
struct M32(u32);
#[cfg(not(feature = "simd"))]
impl M32 {
    #[inline]
    fn splat(x: bool) -> Self { if x { Self(u32::MAX) } else { Self(u32::MIN) } }

    #[inline]
    fn any(&self) -> bool { self.0 != 0 }
}
#[cfg(feature = "simd")]
type M32 = std::simd::Mask<i32, 1>;

/// Erode all chunks by amount.
///
/// Our equation is:
///
///   dh(p) / dt = uplift(p)−k * A(p)^m * slope(p)^n
///
///   where A(p) is the drainage area at p, m and n are constants
///   (we choose m = 0.4 and n = 1), and k is a constant.  We choose
///
///   k = 2.244 * uplift.max() / (desired_max_height)
///
/// since this tends to produce mountains of max height desired_max_height;
/// and we set desired_max_height = 1.0 to reflect limitations of mountain
/// scale.
///
/// This algorithm does this in four steps:
///
/// 1. Sort the nodes in h by height (so the lowest node by altitude is first in
///    the list, and the highest node by altitude is last).
/// 2. Iterate through the list in *reverse.*  For each node, we compute its
///    drainage area as the sum of the drainage areas of its "children" nodes
///    (i.e. the nodes with directed edges to this node). To do this
///    efficiently, we start with the "leaves" (the highest nodes), which have
///    no neighbors higher than them, hence no directed edges to them. We add
///    their area to themselves, and then to all neighbors that they flow into
///    (their "ancestors" in the flow graph); currently, this just means the
///    node immediately downhill of this node. As we go lower, we know that all
///    our "children" already had their areas computed, which means that we can
///    repeat the process in order to derive all the final areas.
/// 3. Now, iterate through the list in *order.*  Whether we used the filling
///    method to compute a "filled" version of each depression, or used the lake
///    connection algorithm described in [1], each node is guaranteed to have
///    zero or one drainage edges out, representing the direction of water flow
///    for that node. For nodes i with zero drainage edges out (boundary nodes
///    and lake bottoms) we set the slope to 0 (so the change in altitude is
///    uplift(i)).
///
///    For nodes with at least one drainage edge out, we take
///    advantage of the fact that we are computing new heights in order and
///    rewrite our equation as (letting j = downhill[i], A[i] be the computed
///    area of point i, p(i) be the x-y position of point i, flux(i) = k *
///    A[i]^m / ((p(i) - p(j)).magnitude()), and δt = 1):
///
///    h[i](t + dt) = h[i](t) + δt * (uplift[i] + flux(i) * h[j](t + δt)) / (1 +
///    flux(i) * δt).
///
/// Since we compute heights in ascending order by height, and j is downhill
/// from i, h[j] will    always be the *new* h[j](t + δt), while h[i] will still
/// not have been computed yet, so we    only need to visit each node once.
///
/// Afterwards, we also apply a hillslope diffusion process using an ADI
/// (alternating direction implicit) method:
///
/// https://github.com/fastscape-lem/fastscapelib-fortran/blob/master/src/Diffusion.f90
///
/// We also borrow the implementation for sediment transport from
///
/// https://github.com/fastscape-lem/fastscapelib-fortran/blob/master/src/StreamPowerLaw.f90
///
/// The approximate equation for soil production function (predicting the rate
/// at which bedrock turns into soil, increasing the distance between the
/// basement and altitude) is taken from equation (11) from [2]. This (among
/// numerous other sources) also includes at least one prediction that hillslope
/// diffusion should be nonlinear, which we sort of attempt to approximate.
///
/// [1] Guillaume Cordonnier, Jean Braun, Marie-Paule Cani,
///     Bedrich Benes, Eric Galin, et al..
///     Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion.
///     Computer Graphics Forum, Wiley, 2016, Proc. EUROGRAPHICS 2016, 35 (2),
///     pp.165-175.     ⟨10.1111/cgf.12820⟩. ⟨hal-01262376⟩
///
/// [2] William E. Dietrich, Dino G. Bellugi, Leonard S. Sklar,
///     Jonathan D. Stock
///     Geomorphic Transport Laws for Predicting Landscape Form and Dynamics.
///     Prediction in Geomorphology, Geophysical Monograph 135.
///     Copyright 2003 by the American Geophysical Union
///     10.1029/135GM09
#[allow(clippy::too_many_arguments)]
fn erode(
    // Underlying map dimensions.
    map_size_lg: MapSizeLg,
    // Height above sea level of topsoil
    h: &mut [Alt],
    // Height above sea level of bedrock
    b: &mut [Alt],
    // Height above sea level of water
    wh: &mut [Alt],
    max_uplift: f32,
    max_g: f32,
    kdsed: f64,
    _seed: &RandomField,
    rock_strength_nz: &(impl NoiseFn<f64, 3> + Sync),
    uplift: impl Fn(usize) -> f32 + Sync,
    n_f: impl Fn(usize) -> f32 + Sync,
    m_f: impl Fn(usize) -> f32 + Sync,
    kf: impl Fn(usize) -> f64 + Sync,
    kd: impl Fn(usize) -> f64,
    g: impl Fn(usize) -> f32 + Sync,
    epsilon_0: impl Fn(usize) -> f32 + Sync,
    alpha: impl Fn(usize) -> f32 + Sync,
    is_ocean: impl Fn(usize) -> bool + Sync,
    // scaling factors
    height_scale: impl Fn(f32) -> Alt + Sync,
    k_da_scale: impl Fn(f64) -> f64,
    threadpool: &rayon::ThreadPool,
) {
    let compute_stats = true;
    debug!("Done draining...");
    // NOTE: To experimentally allow erosion to proceed below sea level, replace 0.0
    // with -<Alt as Float>::infinity().
    let min_erosion_height = 0.0; // -<Alt as Float>::infinity();

    // NOTE: The value being divided by here sets the effective maximum uplift rate,
    // as everything is scaled to it!
    let dt = max_uplift as f64 / 1e-3;
    debug!(?dt, "");
    // Minimum sediment thickness before we treat erosion as sediment based.
    let sediment_thickness = |_n| /*6.25e-5*/1.0e-4 * dt;
    let neighbor_coef = TerrainChunkSize::RECT_SIZE.map(|e| e as f64);
    let chunk_area = neighbor_coef.x * neighbor_coef.y;
    let min_length = neighbor_coef.reduce_partial_min();
    let max_stable = min_length * min_length / dt;

    // Debris flow area coefficient (m^(-2q)).
    let q = 0.2;
    // NOTE: Set to 1.0 to make (assuming n = 1) the erosion equation linear during
    // each stream power iteration.  This will result in significant speedups,
    // at the cost of less interesting erosion behavior (linear vs. nonlinear).
    let q_ = 1.5;
    let k_da = 2.5 * k_da_scale(q);
    let nx = usize::from(map_size_lg.chunks().x);
    let ny = usize::from(map_size_lg.chunks().y);
    let dx = TerrainChunkSize::RECT_SIZE.x as f64;
    let dy = TerrainChunkSize::RECT_SIZE.y as f64;

    #[rustfmt::skip]
    // ε₀ and α are part of the soil production approximate
    // equation:
    //
    // -∂z_b / ∂t = ε₀ * e^(-αH)
    //
    // where
    //    z_b is the elevation of the soil-bedrock interface (i.e. the basement),
    //    ε₀ is the production rate of exposed bedrock (H = 0),
    //    H is the soil thickness normal to the ground surface,
    //    and α is a parameter (units of 1 / length).
    //
    // Note that normal depth at i, for us, will be interpreted as the soil depth vector,
    //   sed_i = ((0, 0), h_i - b_i),
    // projected onto the ground surface slope vector,
    //   ground_surface_i = ((p_i - p_j), h_i - h_j),
    // yielding the soil depth vector
    //   H_i = sed_i - sed_i ⋅ ground_surface_i / (ground_surface_i ⋅ ground_surface_i) * ground_surface_i
    //
    //       = ((0, 0), h_i - b_i) -
    //         (0 * ||p_i - p_j|| + (h_i - b_i) * (h_i - h_j)) / (||p_i - p_j||^2 + (h_i - h_j)^2)
    //         * (p_i - p_j, h_i - h_j)
    //       = ((0, 0), h_i - b_i) -
    //         ((h_i - b_i) * (h_i - h_j)) / (||p_i - p_j||^2 + (h_i - h_j)^2)
    //         * (p_i - p_j, h_i - h_j)
    //       = (h_i - b_i) *
    //         (((0, 0), 1) - (h_i - h_j) / (||p_i - p_j||^2 + (h_i - h_j)^2) * (p_i - p_j, h_i - h_j))
    //   H_i_fact = (h_i - h_j) / (||p_i - p_j||^2 + (h_i - h_j)^2)
    //   H_i = (h_i - b_i) * ((((0, 0), 1) - H_i_fact * (p_i - p_j, h_i - h_j)))
    //       = (h_i - b_i) * (-H_i_fact * (p_i - p_j), 1 - H_i_fact * (h_i - h_j))
    //   ||H_i|| = (h_i - b_i) * √(H_i_fact^2 * ||p_i - p_j||^2 + (1 - H_i_fact * (h_i - h_j))^2)
    //           = (h_i - b_i) * √(H_i_fact^2 * ||p_i - p_j||^2 + 1 - 2 * H_i_fact * (h_i - h_j) +
    //                             H_i_fact^2 * (h_i - h_j)^2)
    //           = (h_i - b_i) * √(H_i_fact^2 * (||p_i - p_j||^2 + (h_i - h_j)^2) +
    //                             1 - 2 * H_i_fact * (h_i - h_j))
    //           = (h_i - b_i) * √((h_i - h_j)^2 / (||p_i - p_j||^2 + (h_i - h_j)^2) * (||p_i - p_j||^2 + (h_i - h_j)^2) +
    //                             1 - 2 * (h_i - h_j)^2 / (||p_i - p_j||^2 + (h_i - h_j)^2))
    //           = (h_i - b_i) * √((h_i - h_j)^2 - 2(h_i - h_j)^2 / (||p_i - p_j||^2 + (h_i - h_j)^2) + 1)
    //
    // where j is i's receiver and ||p_i - p_j|| is the horizontal displacement between them.  The
    // idea here is that we first compute the hypotenuse between the horizontal and vertical
    // displacement of ground (getting the horizontal component of the triangle), and then this is
    // taken as one of the non-hypotenuse sides of the triangle whose other non-hypotenuse side is
    // the normal height H_i, while their square adds up to the vertical displacement (h_i - b_i).
    // If h and b have different slopes, this may not work completely correctly, but this is
    // probably fine as an approximation.

    // Spatio-temporal variation in net precipitation rate ((m / year) / (m / year))  (ratio of
    // precipitation rate at chunk relative to mean precipitation rate p₀).
    let p = 1.0;
    // Dimensionless multiplier for stream power erosion constant when land becomes
    // sediment.
    let k_fs_mult_sed = 4.0;
    // Dimensionless multiplier for G when land becomes sediment.
    let g_fs_mult_sed = 1.0;
    let ((dh, newh, maxh, mrec, mstack, mwrec, area), (mut max_slopes, h_t)) = threadpool.join(
        || {
            let mut dh = downhill(
                map_size_lg,
                |posi| h[posi],
                |posi| is_ocean(posi) && h[posi] <= 0.0,
            );
            debug!("Computed downhill...");
            let (boundary_len, _indirection, newh, maxh) =
                get_lakes(map_size_lg, |posi| h[posi], &mut dh);
            debug!("Got lakes...");
            let (mrec, mstack, mwrec) = get_multi_rec(
                map_size_lg,
                |posi| h[posi],
                &dh,
                &newh,
                wh,
                nx,
                ny,
                dx as Compute,
                dy as Compute,
                maxh,
                threadpool,
            );
            debug!("Got multiple receivers...");
            // TODO: Figure out how to switch between single-receiver and multi-receiver
            // drainage, as the former is much less computationally costly.
            // let area = get_drainage(map_size_lg, &newh, &dh, boundary_len);
            let area = get_multi_drainage(map_size_lg, &mstack, &mrec, &mwrec, boundary_len);
            debug!("Got flux...");
            (dh, newh, maxh, mrec, mstack, mwrec, area)
        },
        || {
            threadpool.join(
                || {
                    let max_slope = get_max_slope(map_size_lg, h, rock_strength_nz, |posi| {
                        height_scale(n_f(posi))
                    });
                    debug!("Got max slopes...");
                    max_slope
                },
                || h.to_vec().into_boxed_slice(),
            )
        },
    );

    assert!(h.len() == dh.len() && dh.len() == area.len());

    // max angle of slope depends on rock strength, which is computed from noise
    // function. TODO: Make more principled.
    let mid_slope = (30.0 / 360.0 * 2.0 * std::f64::consts::PI).tan();

    type SimdType = f32;
    type MaskType = M32;

    // Precompute factors for Stream Power Law.
    let czero = <SimdType as Zero>::zero();
    let (k_fs_fact, k_df_fact) = threadpool.join(
        || {
            dh.par_iter()
                .enumerate()
                .map(|(posi, &posj)| {
                    let mut k_tot = [czero; 8];
                    if posj < 0 {
                        // Egress with no outgoing flows, no stream power.
                        k_tot
                    } else {
                        let old_b_i = b[posi];
                        let sed = h_t[posi] - old_b_i;
                        let n = n_f(posi);
                        // Higher rock strength tends to lead to higher erodibility?
                        let kd_factor = 1.0;
                        let k_fs = kf(posi) / kd_factor;

                        let k = if sed > sediment_thickness(n) {
                            // Sediment
                            k_fs_mult_sed * k_fs
                        } else {
                            // Bedrock
                            k_fs
                        } * dt;
                        let n = n as f64;
                        let m = m_f(posi) as f64;

                        let mwrec_i = &mwrec[posi];
                        mrec_downhill(map_size_lg, &mrec, posi).for_each(|(kk, posj)| {
                            let dxy = (uniform_idx_as_vec2(map_size_lg, posi)
                                - uniform_idx_as_vec2(map_size_lg, posj))
                            .map(|e| e as f64);
                            let neighbor_distance = (neighbor_coef * dxy).magnitude();
                            let knew = (k * (p * chunk_area * (area[posi] * mwrec_i[kk])).powf(m)
                                / neighbor_distance.powf(n))
                                as SimdType;
                            k_tot[kk] = knew;
                        });
                        k_tot
                    }
                })
                .collect::<Vec<[SimdType; 8]>>()
        },
        || {
            dh.par_iter()
                .enumerate()
                .map(|(posi, &posj)| {
                    let mut k_tot = [czero; 8];
                    let uplift_i = uplift(posi) as f64;
                    debug_assert!(uplift_i.is_normal() && uplift_i > 0.0 || uplift_i == 0.0);
                    if posj < 0 {
                        // Egress with no outgoing flows, no stream power.
                        k_tot
                    } else {
                        let area_i = area[posi];
                        let max_slope = max_slopes[posi];
                        let chunk_area_pow = chunk_area.powf(q);

                        let old_b_i = b[posi];
                        let sed = h_t[posi] - old_b_i;
                        let n = n_f(posi);
                        let g_i = if sed > sediment_thickness(n) {
                            // Sediment
                            (g_fs_mult_sed * g(posi)) as f64
                        } else {
                            // Bedrock
                            g(posi) as f64
                        };

                        // Higher rock strength tends to lead to higher curvature?
                        let kd_factor = (max_slope / mid_slope).powi(2);
                        let k_da = k_da * kd_factor;

                        let mwrec_i = &mwrec[posi];
                        mrec_downhill(map_size_lg, &mrec, posi).for_each(|(kk, posj)| {
                            let mwrec_kk = mwrec_i[kk];

                            #[rustfmt::skip]
                            // Working equation:
                            //   U = uplift per time
                            //   D = sediment deposition per time
                            //   E = fluvial erosion per time
                            //   0 = U + D - E - k_df * (1 + k_da * (mrec_kk * A)^q) * (∂B/∂p)^(q_)
                            //
                            //   k_df = (U + D - E) / (1 + k_da * (mrec_kk * A)^q) / (∂B/∂p)^(q_)
                            //
                            // Want: ∂B/∂p = max slope at steady state, i.e.
                            //     ∂B/∂p = max_slope
                            // Then:
                            //   k_df = (U + D - E) / (1 + k_da * (mrec_kk * A)^q) / max_slope^(q_)
                            // Letting
                            //   k = k_df * Δt
                            // we get:
                            //     k = (U + D - E)Δt / (1 + k_da * (mrec_kk * A)^q) / (ΔB)^(q_)
                            //
                            // Now ∂B/∂t under constant uplift, without debris flow (U + D - E), is
                            //   U + D - E = U - E + G/(p̃A) * ∫_A((U - ∂h/∂t) * dA)
                            //
                            // Observing that at steady state ∂h/∂t should theoretically
                            // be 0, we can simplify to:
                            //   U + D = U + G/(p̃A) * ∫_A(U * dA)
                            //
                            // Upper bounding this at uplift = max_uplift/∂t for the whole prior
                            // drainage area, and assuming we account for just mrec_kk of
                            // the combined uplift and deposition, we get:
                            //
                            //   U + D ≤ mrec_kk * U + G/p̃ * max_uplift/∂t
                            //   (U + D - E)Δt ≤ (mrec_kk * uplift_i + G/p̃ * mrec_kk * max_uplift - EΔt)
                            //
                            // therefore
                            //   k * (1 + k_da * (mrec_kk * A)^q) * max_slope^(q_) ≤ (mrec_kk * (uplift_i + G/p̃ * max_uplift) - EΔt)
                            // i.e.
                            //   k ≤ (mrec_kk * (uplift_i + G/p̃ * max_uplift) - EΔt) / (1 + k_da * (mrec_kk * A)^q) / max_slope^q_
                            //
                            // (eliminating EΔt maintains the sign, but it's somewhat imprecise;
                            //  we can address this later, e.g. by assigning a debris flow / fluvial erosion ratio).
                            let chunk_neutral_area = 0.1e6; // 1 km^2 * (1000 m / km)^2 = 1e6 m^2
                            let k = (mwrec_kk * (uplift_i + max_uplift as f64 * g_i / p))
                                / (1.0 + k_da * (mwrec_kk * chunk_neutral_area).powf(q))
                                / max_slope.powf(q_);
                            let dxy = (uniform_idx_as_vec2(map_size_lg, posi)
                                - uniform_idx_as_vec2(map_size_lg, posj))
                            .map(|e| e as f64);
                            let neighbor_distance = (neighbor_coef * dxy).magnitude();

                            let knew = (k
                                * (1.0 + k_da * chunk_area_pow * (area_i * mwrec_kk).powf(q))
                                / neighbor_distance.powf(q_))
                                as SimdType;
                            k_tot[kk] = knew;
                        });
                        k_tot
                    }
                })
                .collect::<Vec<[SimdType; 8]>>()
        },
    );

    debug!("Computed stream power factors...");

    let mut lake_water_volume: Box<[Compute]> =
        vec![0.0_f64; map_size_lg.chunks_len()].into_boxed_slice();
    let mut elev: Box<[Compute]> = vec![0_f64; map_size_lg.chunks_len()].into_boxed_slice();
    let mut h_p: Box<[Compute]> = vec![0_f64; map_size_lg.chunks_len()].into_boxed_slice();
    let mut deltah: Box<[Compute]> = vec![0_f64; map_size_lg.chunks_len()].into_boxed_slice();

    // calculate the elevation / SPL, including sediment flux
    let tol1: Compute = 1.0e-4_f64 * (maxh as Compute + 1.0);
    let tol2: Compute = 1.0e-3_f64 * (max_uplift as Compute + 1.0);
    let tol = tol1.max(tol2);
    let mut err = 2.0 * tol;

    // Some variables for tracking statistics, currently only for debugging
    // purposes.
    let mut minh = <Alt as Float>::infinity();
    let mut maxh = 0.0;
    let mut nland = 0usize;
    let mut ncorr = 0usize;
    let mut sums = 0.0;
    let mut sumh = 0.0;
    let mut sumsed = 0.0;
    let mut sumsed_land = 0.0;
    let mut ntherm = 0usize;
    // ln of product of actual slopes (only where actual is above critical).
    let mut prods_therm = 0.0;
    // ln of product of critical slopes (only where actual is above critical).
    let mut prodscrit_therm = 0.0;
    let avgz = |x, y: usize| if y == 0 { f64::INFINITY } else { x / y as f64 };
    let geomz = |x: f64, y: usize| {
        if y == 0 {
            f64::INFINITY
        } else {
            (x / y as f64).exp()
        }
    };

    // Gauss-Seidel iteration

    let mut lake_silt: Box<[Compute]> = vec![0.0_f64; map_size_lg.chunks_len()].into_boxed_slice();
    let mut lake_sill = vec![-1isize; map_size_lg.chunks_len()].into_boxed_slice();

    let mut n_gs_stream_power_law = 0;
    // NOTE: Increasing this can theoretically sometimes be necessary for
    // convergence, but in practice it is fairly unlikely that you should need
    // to do this (especially if you stick to g ∈ [0, 1]).
    let max_n_gs_stream_power_law = 99;
    let mut mstack_inv = vec![0usize; dh.len()];
    let mut h_t_stack = vec![Zero::zero(); dh.len()];
    let mut dh_stack = vec![0isize; dh.len()];
    let mut h_stack = vec![Zero::zero(); dh.len()];
    let mut b_stack = vec![Zero::zero(); dh.len()];
    let mut area_stack = vec![Zero::zero(); dh.len()];
    assert_eq!(mstack.len(), dh.len());
    assert_eq!(b.len(), dh.len());
    assert_eq!(h_t.len(), dh.len());
    let mstack_inv = &mut *mstack_inv;
    mstack.iter().enumerate().for_each(|(stacki, &posi)| {
        let posi = posi as usize;
        mstack_inv[posi] = stacki;
        dh_stack[stacki] = dh[posi];
        h_t_stack[stacki] = h_t[posi];
        h_stack[stacki] = h[posi];
        b_stack[stacki] = b[posi];
        area_stack[stacki] = area[posi];
    });

    while err > tol && n_gs_stream_power_law < max_n_gs_stream_power_law {
        debug!("Stream power iteration #{:?}", n_gs_stream_power_law);

        // Reset statistics in each loop.
        maxh = 0.0;
        minh = <Alt as Float>::infinity();
        nland = 0usize;
        ncorr = 0usize;
        sums = 0.0;
        sumh = 0.0;
        sumsed = 0.0;
        sumsed_land = 0.0;
        ntherm = 0usize;
        prods_therm = 0.0;
        prodscrit_therm = 0.0;

        let start_time = Instant::now();
        // Keep track of how many iterations we've gone to test for convergence.
        n_gs_stream_power_law += 1;

        threadpool.join(
            || {
                // guess/update the elevation at t+Δt (k)
                (&mut *h_p, &*h_stack)
                    .into_par_iter()
                    .for_each(|(h_p, h_)| {
                        *h_p = (*h_) as Compute;
                    });
            },
            || {
                // calculate erosion/deposition of sediment at each node
                (&*mstack, &mut *deltah, &*h_t_stack, &*h_stack)
                    .into_par_iter()
                    .for_each(|(&posi, deltah, &h_t_i, &h_i)| {
                        let posi = posi as usize;
                        let uplift_i = uplift(posi) as Alt;
                        let delta = (h_t_i + uplift_i - h_i) as Compute;
                        *deltah = delta;
                    });
            },
        );
        debug!(
            "(Done pre-computation, time={:?}ms).",
            start_time.elapsed().as_millis()
        );
        #[rustfmt::skip]
        // sum the erosion in stack order
        //
        // After:
        // deltah_i = Σ{j ∈ {i} ∪ upstream_i(t)}(h_j(t, FINAL) + U_j * Δt - h_i(t + Δt, k))
        let start_time = Instant::now();
        izip!(&*mstack, &*dh_stack, &h_t_stack, &*h_p)
            .enumerate()
            .for_each(|(stacki, (&posi, &posj, &h_t_i, &h_p_i))| {
                let posi = posi as usize;
                let deltah_i = deltah[stacki];
                if posj < 0 {
                    lake_silt[stacki] = deltah_i;
                } else {
                    let uplift_i = uplift(posi) as Alt;
                    let uphill_deltah_i = deltah_i - ((h_t_i + uplift_i) as Compute - h_p_i);
                    let lposi = lake_sill[stacki];
                    if lposi == stacki as isize {
                        if uphill_deltah_i <= 0.0 {
                            lake_silt[stacki] = 0.0;
                        } else {
                            lake_silt[stacki] = uphill_deltah_i;
                        }
                    }
                    let mwrec_i = &mwrec[posi];
                    mrec_downhill(map_size_lg, &mrec, posi).for_each(|(k, posj)| {
                        let stack_posj = mstack_inv[posj];
                        deltah[stack_posj] += deltah_i * mwrec_i[k];
                    });
                }
            });
        debug!(
            "(Done sediment transport computation, time={:?}ms).",
            start_time.elapsed().as_millis()
        );
        #[rustfmt::skip]
        // do ij=nn,1,-1
        //   ijk=stack(ij)
        //   ijr=rec(ijk)
        //   if (ijr.ne.ijk) then
        //     dh(ijk)=dh(ijk)-(ht(ijk)-hp(ijk))
        //     if (lake_sill(ijk).eq.ijk) then
        //       if (dh(ijk).le.0.d0) then
        //         lake_sediment(ijk)=0.d0
        //       else
        //         lake_sediment(ijk)=dh(ijk)
        //       endif
        //     endif
        //     dh(ijk)=dh(ijk)+(ht(ijk)-hp(ijk))
        //     dh(ijr)=dh(ijr)+dh(ijk)
        //   else
        //     lake_sediment(ijk)=dh(ijk)
        //   endif
        // enddo

        let start_time = Instant::now();
        (
            &*mstack,
            &mut *elev,
            &*dh_stack,
            &*h_t_stack,
            &*area_stack,
            &*deltah,
            &*h_p,
            &*b_stack,
        )
            .into_par_iter()
            .for_each(
                |(&posi, elev, &dh_i, &h_t_i, &area_i, &deltah_i, &h_p_i, &b_i)| {
                    let posi = posi as usize;

                    let uplift_i = uplift(posi) as Alt;
                    if dh_i < 0 {
                        *elev = (h_t_i + uplift_i) as Compute;
                    } else {
                        let old_h_after_uplift_i = (h_t_i + uplift_i) as Compute;
                        let area_i = area_i as Compute;
                        let uphill_silt_i = deltah_i - (old_h_after_uplift_i - h_p_i);
                        let old_b_i = b_i;
                        let sed = h_t_i - old_b_i;
                        let n = n_f(posi);
                        let g_i = if sed > sediment_thickness(n) {
                            (g_fs_mult_sed * g(posi)) as Compute
                        } else {
                            g(posi) as Compute
                        };
                        // Make sure deposition coefficient doesn't result in more deposition than
                        // there actually was material to deposit.  The
                        // current assumption is that as long as we
                        // are storing at most as much sediment as there actually was along the
                        // river, we are in the clear.
                        let g_i_ratio = g_i / (p * area_i);
                        // One side of nonlinear equation (23):
                        //
                        // h_i(t) + U_i * Δt + G / (p̃ * Ã_i) * Σ
                        // {j ∈ upstream_i(t)}(h_j(t, FINAL)
                        // + U_j * Δt - h_j(t + Δt, k))
                        //
                        // where
                        //
                        // Ã_i = A_i / (∆x∆y) = N_i,
                        // number of cells upstream of cell i.
                        *elev = old_h_after_uplift_i + uphill_silt_i * g_i_ratio;
                    }
                },
            );
        debug!(
            "(Done elevation estimation, time={:?}ms).",
            start_time.elapsed().as_millis()
        );

        let start_time = Instant::now();
        // TODO: Consider taking advantage of multi-receiver flow here.
        // Iterate in ascending height order.
        let mut sum_err: Compute = 0.0_f64;
        izip!(&*mstack, &*elev, &*b_stack, &*h_t_stack, &*dh_stack, &*h_p)
            .enumerate()
            .rev()
            .for_each(|(stacki, (&posi, &elev_i, &b_i, &h_t_i, &dh_i, &h_p_i))| {
                let iteration_error = 0.0;
                let posi = posi as usize;
                let old_elev_i = elev_i;
                let old_b_i = b_i;
                let old_ht_i = h_t_i;
                let sed = old_ht_i - old_b_i;

                let posj = dh_i;
                if posj < 0 {
                    if posj == -1 {
                        panic!("Disconnected lake!");
                    }
                    if h_t_i > 0.0 {
                        warn!("Ocean above zero?");
                    }
                    // Egress with no outgoing flows.
                    // wh for oceans is always at least min_erosion_height.
                    let uplift_i = uplift(posi) as Alt;
                    wh[posi] = FloatCore::max(min_erosion_height, h_t_i + uplift_i);
                    lake_sill[stacki] = posi as isize;
                    lake_water_volume[stacki] = 0.0;
                } else {
                    let posj = posj as usize;

                    // Has an outgoing flow edge (posi, posj).
                    // flux(i) = k * A[i]^m / ((p(i) - p(j)).magnitude()), and δt = 1
                    // h[i](t + dt) = (h[i](t) + δt * (uplift[i] + flux(i) * h[j](t + δt))) / (1 +
                    // flux(i) * δt). NOTE: posj has already been computed since
                    // it's downhill from us. Therefore, we can rely on wh being
                    // set to the water height for that node.
                    // let h_j = h[posj_stack] as f64;
                    let wh_j = wh[posj];
                    let old_h_i = h_stack[stacki];
                    let mut new_h_i = old_h_i;

                    // Only perform erosion if we are above the water level of the previous node.
                    // NOTE: Can replace wh_j with h_j here (and a few other places) to allow
                    // erosion underwater, producing very different looking
                    // maps!
                    if old_elev_i > wh_j
                    /* h_j */
                    {
                        let dtherm = 0.0f64;
                        let h0 = old_elev_i + dtherm;

                        // hi(t + ∂t) = (hi(t) + ∂t(ui + kp^mAi^m(hj(t + ∂t)/||pi - pj||))) / (1 +
                        // ∂t * kp^mAi^m / ||pi - pj||)
                        let n = n_f(posi) as f64;

                        // Fluvial erosion.
                        let k_df_fact = &k_df_fact[posi];
                        let k_fs_fact = &k_fs_fact[posi];
                        if (n - 1.0).abs() <= 1.0e-3 && (q_ - 1.0).abs() <= 1.0e-3 {
                            let mut f = h0;
                            let mut df = 1.0;
                            mrec_downhill(map_size_lg, &mrec, posi).for_each(|(kk, posj)| {
                                let posj_stack = mstack_inv[posj];
                                let h_j = h_stack[posj_stack];
                                // This can happen in cases where receiver kk is neither uphill of
                                // nor downhill from posi's direct receiver.
                                // NOTE: Fastscape does h_t[posi] + uplift(posi) as f64 >= h_t[posj]
                                // + uplift(posj) as f64
                                // NOTE: We also considered using old_elev_i > wh[posj] here.
                                if old_elev_i > h_j {
                                    let elev_j = h_j;
                                    let fact = k_fs_fact[kk] as f64 + k_df_fact[kk] as f64;
                                    f += fact * elev_j;
                                    df += fact;
                                }
                            });
                            new_h_i = f / df;
                        } else {
                            // Local Newton-Raphson
                            // TODO: Work out how (if possible) to make this converge for tiny n.
                            let omega1 = 0.875f64 * n;
                            let omega2 = 0.875f64 / q_;
                            let omega = omega1.max(omega2);
                            let tolp = 1.0e-3;
                            let mut errp = 2.0 * tolp;
                            let mut rec_heights = [0.0; 8];
                            let mut mask = [MaskType::splat(false); 8];
                            mrec_downhill(map_size_lg, &mrec, posi).for_each(|(kk, posj)| {
                                let posj_stack = mstack_inv[posj];
                                let h_j = h_stack[posj_stack];
                                // NOTE: Fastscape does h_t[posi] + uplift(posi) as f64 >= h_t[posj]
                                // + uplift(posj) as f64
                                // NOTE: We also considered using old_elev_i > wh[posj] here.
                                if old_elev_i > h_j {
                                    mask[kk] = MaskType::splat(true);
                                    rec_heights[kk] = h_j as SimdType;
                                }
                            });
                            while errp > tolp {
                                let mut f = new_h_i - h0;
                                let mut df = 1.0;
                                izip!(&mask, &rec_heights, k_fs_fact, k_df_fact).for_each(
                                    |(&mask_kk, &rec_heights_kk, &k_fs_fact_kk, &k_df_fact_kk)| {
                                        if mask_kk.any() {
                                            let h_j = rec_heights_kk;
                                            let elev_j = h_j;
                                            let dh =
                                                FloatCore::max(0.0, new_h_i as SimdType - elev_j);
                                            let powf = |a: SimdType, b| a.powf(b);
                                            let dh_fs_sample = k_fs_fact_kk as SimdType
                                                * powf(dh, n as SimdType - 1.0);
                                            let dh_df_sample = k_df_fact_kk as SimdType
                                                * powf(dh, q_ as SimdType - 1.0);
                                            // Want: h_i(t+Δt) = h0 - fact * (h_i(t+Δt) -
                                            // h_j(t+Δt))^n
                                            // Goal: h_i(t+Δt) - h0 + fact * (h_i(t+Δt) -
                                            // h_j(t+Δt))^n = 0
                                            f += ((dh_fs_sample + dh_df_sample) * dh) as f64;
                                            // ∂h_i(t+Δt)/∂n = 1 + fact * n * (h_i(t+Δt) -
                                            // h_j(t+Δt))^(n - 1)
                                            df += (n as SimdType * dh_fs_sample
                                                + q_ as SimdType * dh_df_sample)
                                                as f64;
                                        }
                                    },
                                );
                                // hn = h_i(t+Δt, k) - (h_i(t+Δt, k) - (h0 - fact * (h_i(t+Δt, k) -
                                // h_j(t+Δt))^n)) / ∂h_i/∂n(t+Δt, k)
                                let hn = new_h_i - f / df;
                                // errp = |(h_i(t+Δt, k) - (h0 - fact * (h_i(t+Δt, k) -
                                // h_j(t+Δt))^n)) / ∂h_i/∂n(t+Δt, k)|
                                errp = (hn - new_h_i).abs();
                                // h_i(t+∆t, k+1) = ...
                                new_h_i = new_h_i * (1.0 - omega) + hn * omega;
                            }
                            /* omega=0.875d0/n
                            tolp=1.d-3
                            errp=2.d0*tolp
                            h0=elev(ijk)
                            do while (errp.gt.tolp)
                              f=h(ijk)-h0
                              df=1.d0
                              if (ht(ijk).gt.ht(ijr)) then
                                fact = kfint(ijk)*dt*a(ijk)**m/length(ijk)**n
                                f=f+fact*max(0.d0,h(ijk)-h(ijr))**n
                                df=df+fact*n*max(0.d0,h(ijk)-h(ijr))**(n-1.d0)
                              endif
                              hn=h(ijk)-f/df
                              errp=abs(hn-h(ijk))
                              h(ijk)=h(ijk)*(1.d0-omega)+hn*omega
                            enddo */
                        }

                        lake_sill[stacki] = posi as isize;
                        lake_water_volume[stacki] = 0.0;

                        // If we dipped below the receiver's water level, set our height to the
                        // receiver's water level.
                        // NOTE: If we want erosion to proceed underwater, use h_j here instead of
                        // wh_j.
                        if new_h_i <= wh_j
                        /* h_j */
                        {
                            if compute_stats {
                                ncorr += 1;
                            }
                            // NOTE: Why wh_j?
                            // Because in the next round, if the old height is still wh_j or under,
                            // it will be set precisely equal to the
                            // estimated height, meaning it effectively
                            // "vanishes" and just deposits sediment to its receiver.
                            // (This is probably related to criteria for block Gauss-Seidel, etc.).
                            // NOTE: If we want erosion to proceed underwater, use h_j here instead
                            // of wh_j.
                            new_h_i = wh_j;
                        } else if compute_stats && new_h_i > 0.0 {
                            let dxy = (uniform_idx_as_vec2(map_size_lg, posi)
                                - uniform_idx_as_vec2(map_size_lg, posj))
                            .map(|e| e as f64);
                            let neighbor_distance = (neighbor_coef * dxy).magnitude();
                            let dz = (new_h_i - wh_j).max(0.0);
                            let mag_slope = dz / neighbor_distance;

                            nland += 1;
                            sumsed_land += sed;
                            sumh += new_h_i;
                            sums += mag_slope;
                        }
                    } else {
                        new_h_i = old_elev_i;
                        let posj_stack = mstack_inv[posj];
                        let lposj = lake_sill[posj_stack];
                        lake_sill[stacki] = lposj;
                        if lposj >= 0 {
                            let lposj = lposj as usize;
                            lake_water_volume[lposj] += (wh_j - old_elev_i) as Compute;
                        }
                    }
                    // Set max_slope to this node's water height (max of receiver's water height and
                    // this node's height).
                    wh[posi] = wh_j.max(new_h_i) as Alt;
                    h_stack[stacki] = new_h_i as Alt;
                }
                if compute_stats {
                    sumsed += sed;
                    let h_i = h_stack[stacki];
                    if h_i > 0.0 {
                        minh = h_i.min(minh);
                    }
                    maxh = h_i.max(maxh);
                }

                // Add sum of squares of errors.
                sum_err +=
                    (iteration_error + h_stack[stacki] as Compute - h_p_i as Compute).powi(2);
            });
        debug!(
            "(Done erosion computation, time={:?}ms)",
            start_time.elapsed().as_millis()
        );

        err = (sum_err / mstack.len() as Compute).sqrt();
        debug!("(RMSE: {:?})", err);
        if max_g == 0.0 {
            err = 0.0;
        }
        if n_gs_stream_power_law == max_n_gs_stream_power_law {
            warn!(
                "Beware: Gauss-Seidel scheme not convergent: err={:?}, expected={:?}",
                err, tol
            );
        }
    }

    (&*mstack_inv, &mut *h)
        .into_par_iter()
        .enumerate()
        .for_each(|(posi, (&stacki, h))| {
            assert_eq!(posi, mstack[stacki] as usize);
            *h = h_stack[stacki];
        });

    // update the basement
    //
    // NOTE: Despite this not quite applying since basement order and height order
    // differ, we once again borrow the implicit FastScape stack order.  If this
    // becomes a problem we can easily compute a separate stack order just for
    // basement. TODO: Consider taking advantage of multi-receiver flow here.
    b.par_iter_mut()
        .zip_eq(h.par_iter())
        .enumerate()
        .for_each(|(posi, (b, &h_i))| {
            let old_b_i = *b;
            let uplift_i = uplift(posi) as Alt;

            // First, add uplift...
            let mut new_b_i = old_b_i + uplift_i;

            let posj = dh[posi];
            // Sediment height normal to bedrock.  NOTE: Currently we can actually have
            // sediment and bedrock slope at different heights, meaning there's
            // no uniform slope.  There are probably more correct ways to
            // account for this, such as averaging, integrating, or doing things
            // by mass / volume instead of height, but for now we use the time-honored
            // technique of ignoring the problem.
            let vertical_sed = (h_i - new_b_i).max(0.0);
            let h_normal = if posj < 0 {
                // Egress with no outgoing flows; for now, we assume this means normal and
                // vertical coincide.
                vertical_sed
            } else {
                let posj = posj as usize;
                let h_j = h[posj];
                let dxy = (uniform_idx_as_vec2(map_size_lg, posi)
                    - uniform_idx_as_vec2(map_size_lg, posj))
                .map(|e| e as f64);
                let neighbor_distance_squared = (neighbor_coef * dxy).magnitude_squared();
                let dh = h_i - h_j;
                // H_i_fact = (h_i - h_j) / (||p_i - p_j||^2 + (h_i - h_j)^2)
                let h_i_fact = dh / (neighbor_distance_squared + dh * dh);
                let h_i_vertical = 1.0 - h_i_fact * dh;
                // ||H_i|| = (h_i - b_i) * √((H_i_fact^2 * ||p_i - p_j||^2 + (1 - H_i_fact *
                // (h_i - h_j))^2))
                vertical_sed
                    * (h_i_fact * h_i_fact * neighbor_distance_squared
                        + h_i_vertical * h_i_vertical)
                        .sqrt()
            };
            // Rate of sediment production: -∂z_b / ∂t = ε₀ * e^(-αH)
            let p_i = epsilon_0(posi) as f64 * dt * f64::exp(-alpha(posi) as f64 * h_normal);

            new_b_i -= p_i as Alt;

            // Clamp basement so it doesn't exceed height.
            new_b_i = new_b_i.min(h_i);
            *b = new_b_i;
        });
    debug!("Done updating basement and applying soil production...");

    // update the height to reflect sediment flux.
    if max_g > 0.0 {
        //  If max_g = 0.0, lake_silt will be too high during the first iteration since
        // our  initial estimate for h is very poor; however, the elevation
        // estimate will have been  unaffected by g.
        (&mut *h, &*mstack_inv)
            .into_par_iter()
            .enumerate()
            .for_each(|(posi, (h, &stacki))| {
                let lposi = lake_sill[stacki];
                if lposi >= 0 {
                    let lposi = lposi as usize;
                    if lake_water_volume[lposi] > 0.0 {
                        // +max(0.d0,min(lake_sediment(lake_sill(ij)),
                        // lake_water_volume(lake_sill(ij))))/
                        // lake_water_volume(lake_sill(ij))*(water(ij)-h(ij))
                        *h += (FloatCore::max(0.0, lake_silt[stacki].min(lake_water_volume[lposi]))
                            / lake_water_volume[lposi]
                            * (wh[posi] - *h) as Compute) as Alt;
                    }
                }
            });
    }
    // do ij=1,nn
    //   if (lake_sill(ij).ne.0) then
    //     if (lake_water_volume(lake_sill(ij)).gt.0.d0) h(ij)=h(ij) &
    //     +max(0.d0,min(lake_sediment(lake_sill(ij)),
    // lake_water_volume(lake_sill(ij))))/ &
    //     lake_water_volume(lake_sill(ij))*(water(ij)-h(ij))
    //   endif
    // enddo

    debug!(
        "Done applying stream power (max height: {:?}) (avg height: {:?}) (min height: {:?}) (avg \
         slope: {:?})\n        (above talus angle, geom. mean slope [actual/critical/ratio]: {:?} \
         / {:?} / {:?})\n        (old avg sediment thickness [all/land]: {:?} / {:?})\n        \
         (num land: {:?}) (num thermal: {:?}) (num corrected: {:?})",
        maxh,
        avgz(sumh, nland),
        minh,
        avgz(sums, nland),
        geomz(prods_therm, ntherm),
        geomz(prodscrit_therm, ntherm),
        geomz(prods_therm - prodscrit_therm, ntherm),
        avgz(sumsed, newh.len()),
        avgz(sumsed_land, nland),
        nland,
        ntherm,
        ncorr,
    );

    // Apply thermal erosion.
    maxh = 0.0;
    minh = <Alt as Float>::infinity();
    sumh = 0.0;
    sums = 0.0;
    sumsed = 0.0;
    sumsed_land = 0.0;
    nland = 0usize;
    ncorr = 0usize;
    ntherm = 0usize;
    prods_therm = 0.0;
    prodscrit_therm = 0.0;
    newh.iter().for_each(|&posi| {
        let posi = posi as usize;
        let old_h_i = h[posi];
        let old_b_i = b[posi];
        let sed = old_h_i - old_b_i;

        let max_slope = max_slopes[posi];
        let n = n_f(posi);
        max_slopes[posi] = if sed > sediment_thickness(n) && kdsed > 0.0 {
            // Sediment
            kdsed
        } else {
            // Bedrock
            kd(posi)
        };

        let posj = dh[posi];
        if posj < 0 {
            // Egress with no outgoing flows.
            if posj == -1 {
                panic!("Disconnected lake!");
            }
            // wh for oceans is always at least min_erosion_height.
            wh[posi] = FloatCore::max(min_erosion_height, old_h_i as Alt);
        } else {
            let posj = posj as usize;
            // Find the water height for this chunk's receiver; we only apply thermal
            // erosion for chunks above water.
            let wh_j = wh[posj];
            let mut new_h_i = old_h_i;
            if wh_j < old_h_i {
                // NOTE: Currently assuming that talus angle is not eroded once the substance is
                // totally submerged in water, and that talus angle if part of the substance is
                // in water is 0 (or the same as the dry part, if this is set to wh_j), but
                // actually that's probably not true.
                let old_h_j = h[posj];
                let h_j = old_h_j;
                // Test the slope.
                // Hacky version of thermal erosion: only consider lowest neighbor, don't
                // redistribute uplift to other neighbors.
                let (posk, h_k) = (posj, h_j);
                let (posk, h_k) = if h_k < h_j { (posk, h_k) } else { (posj, h_j) };
                let dxy = (uniform_idx_as_vec2(map_size_lg, posi)
                    - uniform_idx_as_vec2(map_size_lg, posk))
                .map(|e| e as f64);
                let neighbor_distance = (neighbor_coef * dxy).magnitude();
                let dz = (new_h_i - h_k).max(0.0);
                let mag_slope = dz / neighbor_distance;
                if mag_slope >= max_slope {
                    let dtherm = 0.0;
                    new_h_i -= dtherm;
                    if new_h_i <= wh_j {
                        if compute_stats {
                            ncorr += 1;
                        }
                    } else if compute_stats && new_h_i > 0.0 {
                        let dz = (new_h_i - h_j).max(0.0);
                        let slope = dz / neighbor_distance;
                        sums += slope;
                        nland += 1;
                        sumh += new_h_i;
                        sumsed_land += sed;
                    }
                    if compute_stats {
                        ntherm += 1;
                        prodscrit_therm += max_slope.ln();
                        prods_therm += mag_slope.ln();
                    }
                } else {
                    // Poorly emulating nonlinear hillslope transport as described by
                    // http://eps.berkeley.edu/~bill/papers/112.pdf.
                    // sqrt(3)/3*32*32/(128000/2)
                    // Also Perron-2011-Journal_of_Geophysical_Research__Earth_Surface.pdf
                    let slope_ratio = (mag_slope / max_slope).powi(2);
                    let slope_nonlinear_factor =
                        slope_ratio * ((3.0 - slope_ratio) / (1.0 - slope_ratio).powi(2));
                    max_slopes[posi] += (max_slopes[posi] * slope_nonlinear_factor).min(max_stable);
                    if compute_stats && new_h_i > 0.0 {
                        sums += mag_slope;
                        // Just use the computed rate.
                        nland += 1;
                        sumh += new_h_i;
                        sumsed_land += sed;
                    }
                }
            }
            // Set wh to this node's water height (max of receiver's water height and
            // this node's height).
            wh[posi] = wh_j.max(new_h_i) as Alt;
        }

        if compute_stats {
            sumsed += sed;
            let h_i = h[posi];
            if h_i > 0.0 {
                minh = h_i.min(minh);
            }
            maxh = h_i.max(maxh);
        }
    });
    debug!(
        "Done applying thermal erosion (max height: {:?}) (avg height: {:?}) (min height: {:?}) \
         (avg slope: {:?})\n        (above talus angle, geom. mean slope [actual/critical/ratio]: \
         {:?} / {:?} / {:?})\n        (avg sediment thickness [all/land]: {:?} / {:?})\n        \
         (num land: {:?}) (num thermal: {:?}) (num corrected: {:?})",
        maxh,
        avgz(sumh, nland),
        minh,
        avgz(sums, nland),
        geomz(prods_therm, ntherm),
        geomz(prodscrit_therm, ntherm),
        geomz(prods_therm - prodscrit_therm, ntherm),
        avgz(sumsed, newh.len()),
        avgz(sumsed_land, nland),
        nland,
        ntherm,
        ncorr,
    );

    // Apply hillslope diffusion.
    diffusion(
        nx,
        ny,
        nx as f64 * dx,
        ny as f64 * dy,
        dt,
        (),
        h,
        b,
        |posi| max_slopes[posi],
        -1.0,
    );
    debug!("Done applying diffusion.");
    debug!("Done eroding.");
}

/// The Planchon-Darboux algorithm for extracting drainage networks.
///
/// http://horizon.documentation.ird.fr/exl-doc/pleins_textes/pleins_textes_7/sous_copyright/010031925.pdf
///
/// See https://github.com/mewo2/terrain/blob/master/terrain.js
pub(crate) fn fill_sinks<F: Float + Send + Sync>(
    map_size_lg: MapSizeLg,
    h: impl Fn(usize) -> F + Sync,
    is_ocean: impl Fn(usize) -> bool + Sync,
) -> Box<[F]> {
    // NOTE: We are using the "exact" version of depression-filling, which is slower
    // but doesn't change altitudes.
    let epsilon = F::zero();
    let infinity = F::infinity();
    let range = 0..map_size_lg.chunks_len();
    let oldh = range
        .into_par_iter()
        .map(&h)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    let mut newh = oldh
        .par_iter()
        .enumerate()
        .map(|(posi, &h)| {
            let is_near_edge = is_ocean(posi);
            if is_near_edge {
                debug_assert!(h <= F::zero());
                h
            } else {
                infinity
            }
        })
        .collect::<Vec<_>>()
        .into_boxed_slice();

    loop {
        let mut changed = false;
        (0..newh.len()).for_each(|posi| {
            let nh = newh[posi];
            let oh = oldh[posi];
            if nh == oh {
                return;
            }
            for nposi in neighbors(map_size_lg, posi) {
                let onbh = newh[nposi];
                let nbh = onbh + epsilon;
                // If there is even one path downhill from this node's original height, fix
                // the node's new height to be equal to its original height, and break out of
                // the loop.
                if oh >= nbh {
                    newh[posi] = oh;
                    changed = true;
                    break;
                }
                // Otherwise, we know this node's original height is below the new height of all
                // of its neighbors.  Then, we try to choose the minimum new
                // height among all this node's neighbors that is (plus a
                // constant epsilon) below this node's new height.
                //
                // (If there is no such node, then the node's new height must be (minus a
                // constant epsilon) lower than the new height of every
                // neighbor, but above its original height.  But this can't be
                // true for *all* nodes, because if this is true for any
                // node, it is not true of any of its neighbors.  So all neighbors must either
                // be their original heights, or we will have another iteration
                // of the loop (one of its neighbors was changed to its minimum
                // neighbor).  In the second case, in the next round, all
                // neighbor heights will be at most nh + epsilon).
                if nh > nbh && nbh > oh {
                    newh[posi] = nbh;
                    changed = true;
                }
            }
        });
        if !changed {
            return newh;
        }
    }
}

/// Algorithm for finding and connecting lakes.  Assumes newh and downhill have
/// already been computed.  When a lake's value is negative, it is its own lake
/// root, and when it is 0, it is on the boundary of Ω.
///
/// Returns a 4-tuple containing:
/// - The first indirection vector (associating chunk indices with their lake's
///   root node).
/// - A list of chunks on the boundary (non-lake egress points).
/// - The second indirection vector (associating chunk indices with their lake's
///   adjacency list).
/// - The adjacency list (stored in a single vector), indexed by the second
///   indirection vector.
pub fn get_lakes<F: FloatCore>(
    map_size_lg: MapSizeLg,
    h: impl Fn(usize) -> F,
    downhill: &mut [isize],
) -> (usize, Box<[i32]>, Box<[u32]>, F) {
    // Associates each lake index with its root node (the deepest one in the lake),
    // and a list of adjacent lakes.  The list of adjacent lakes includes the
    // lake index of the adjacent lake, and a node index in the adjacent lake
    // which has a neighbor in this lake.  The particular neighbor should be the
    // one that generates the minimum "pass height" encountered so far, i.e. the
    // chosen pair should minimize the maximum of the heights of the nodes in the
    // pair.

    // We start by taking steps to allocate an indirection vector to use for storing
    // lake indices. Initially, each entry in this vector will contain 0.  We
    // iterate in ascending order through the sorted newh.  If the node has
    // downhill == -2, it is a boundary node Ω and we store it in the boundary
    // vector.  If the node has downhill == -1, it is a fresh lake, and we store 0
    // in it.  If the node has non-negative downhill, we use the downhill index
    // to find the next node down; if the downhill node has a lake entry < 0,
    // then downhill is a lake and its entry can be negated to find an
    // (over)estimate of the number of entries it needs.  If the downhill
    // node has a non-negative entry, then its entry is the lake index for this
    // node, so we should access that entry and increment it, then set our own
    // entry to it.
    let mut boundary = Vec::with_capacity(downhill.len());
    let mut indirection = vec![/*-1i32*/0i32; map_size_lg.chunks_len()].into_boxed_slice();

    let mut newh = Vec::with_capacity(downhill.len());

    // Now, we know that the sum of all the indirection nodes will be the same as
    // the number of nodes.  We can allocate a *single* vector with 8 * nodes
    // entries, to be used as storage space, and augment our indirection vector
    // with the starting index, resulting in a vector of slices.  As we go, we
    // replace each lake entry with its index in the new indirection buffer,
    // allowing
    let mut lakes = vec![(-1, 0); /*(indirection.len() - boundary.len())*/indirection.len() * 8];
    let mut indirection_ = vec![0u32; indirection.len()];
    // First, find all the lakes.
    let mut lake_roots = Vec::with_capacity(downhill.len()); // Test
    (*downhill)
        .iter()
        .enumerate()
        .filter(|(_, &dh_idx)| dh_idx < 0)
        .for_each(|(chunk_idx, &dh)| {
            if dh == -2 {
                // On the boundary, add to the boundary vector.
                boundary.push(chunk_idx);
            // Still considered a lake root, though.
            } else if dh == -1 {
                lake_roots.push(chunk_idx);
            } else {
                panic!("Impossible.");
            }
            // Find all the nodes uphill from this lake.  Since there is only one outgoing
            // edge in the "downhill" graph, this is guaranteed never to visit a
            // node more than once.
            let start = newh.len();
            let indirection_idx = (start * 8) as u32;
            // New lake root
            newh.push(chunk_idx as u32);
            let mut cur = start;
            while cur < newh.len() {
                let node = newh[cur];
                uphill(map_size_lg, downhill, node as usize).for_each(|child| {
                    // lake_idx is the index of our lake root.
                    indirection[child] = chunk_idx as i32;
                    indirection_[child] = indirection_idx;
                    newh.push(child as u32);
                });
                cur += 1;
            }
            // Find the number of elements pushed.
            let length = (cur - start) * 8;
            // New lake root (lakes have indirection set to -length).
            indirection[chunk_idx] = -(length as i32);
            indirection_[chunk_idx] = indirection_idx;
        });
    assert_eq!(newh.len(), downhill.len());

    debug!("Old lake roots: {:?}", lake_roots.len());

    let newh = newh.into_boxed_slice();
    let mut maxh = -F::infinity();
    // Now, we know that the sum of all the indirection nodes will be the same as
    // the number of nodes.  We can allocate a *single* vector with 8 * nodes
    // entries, to be used as storage space, and augment our indirection vector
    // with the starting index, resulting in a vector of slices.  As we go, we
    // replace each lake entry with its index in the new indirection buffer,
    // allowing
    newh.iter().for_each(|&chunk_idx_| {
        let chunk_idx = chunk_idx_ as usize;
        let lake_idx_ = indirection_[chunk_idx];
        let lake_idx = lake_idx_ as usize;
        let height = h(chunk_idx_ as usize);
        // While we're here, compute the max elevation difference from zero among all
        // nodes.
        maxh = maxh.max(height.abs());
        // For every neighbor, check to see whether it is already set; if the neighbor
        // is set, its height is ≤ our height.  We should search through the
        // edge list for the neighbor's lake to see if there's an entry; if not,
        // we insert, and otherwise we get its height.  We do the same thing in
        // our own lake's entry list.  If the maximum of the heights we get out
        // from this process is greater than the maximum of this chunk and its
        // neighbor chunk, we switch to this new edge.
        neighbors(map_size_lg, chunk_idx).for_each(|neighbor_idx| {
            let neighbor_height = h(neighbor_idx);
            let neighbor_lake_idx_ = indirection_[neighbor_idx];
            let neighbor_lake_idx = neighbor_lake_idx_ as usize;
            if neighbor_lake_idx_ < lake_idx_ {
                // We found an adjacent node that is not on the boundary and has already
                // been processed, and also has a non-matching lake.  Therefore we can use
                // split_at_mut to get disjoint slices.
                let (lake, neighbor_lake) = {
                    // println!("Okay, {:?} < {:?}", neighbor_lake_idx, lake_idx);
                    let (neighbor_lake, lake) = lakes.split_at_mut(lake_idx);
                    (lake, &mut neighbor_lake[neighbor_lake_idx..])
                };

                // We don't actually need to know the real length here, because we've reserved
                // enough spaces that we should always either find a -1 (available slot) or an
                // entry for this chunk.
                'outer: for pass in lake.iter_mut() {
                    if pass.0 == -1 {
                        // println!("One time, in my mind, one time... (neighbor lake={:?}
                        // lake={:?})", neighbor_lake_idx, lake_idx_);
                        *pass = (chunk_idx_ as i32, neighbor_idx as u32);
                        // Should never run out of -1s in the neighbor lake if we didn't find
                        // the neighbor lake in our lake.
                        *neighbor_lake
                            .iter_mut()
                            .find(|neighbor_pass| neighbor_pass.0 == -1)
                            .unwrap() = (neighbor_idx as i32, chunk_idx_);
                        // panic!("Should never happen; maybe didn't reserve enough space in
                        // lakes?")
                        break;
                    } else if indirection_[pass.1 as usize] == neighbor_lake_idx_ {
                        for neighbor_pass in neighbor_lake.iter_mut() {
                            // Should never run into -1 while looping here, since (i, j)
                            // and (j, i) should be added together.
                            if indirection_[neighbor_pass.1 as usize] == lake_idx_ {
                                let pass_height = h(neighbor_pass.1 as usize);
                                let neighbor_pass_height = h(pass.1 as usize);
                                if height.max(neighbor_height)
                                    < pass_height.max(neighbor_pass_height)
                                {
                                    *pass = (chunk_idx_ as i32, neighbor_idx as u32);
                                    *neighbor_pass = (neighbor_idx as i32, chunk_idx_);
                                }
                                break 'outer;
                            }
                        }
                        // Should always find a corresponding match in the neighbor lake if
                        // we found the neighbor lake in our lake.
                        let indirection_idx = indirection[chunk_idx];
                        let lake_chunk_idx = if indirection_idx >= 0 {
                            indirection_idx as usize
                        } else {
                            chunk_idx
                        };
                        let indirection_idx = indirection[neighbor_idx];
                        let neighbor_lake_chunk_idx = if indirection_idx >= 0 {
                            indirection_idx as usize
                        } else {
                            neighbor_idx
                        };
                        panic!(
                            "For edge {:?} between lakes {:?}, couldn't find partner for pass \
                             {:?}. Should never happen; maybe forgot to set both edges?",
                            (
                                (chunk_idx, uniform_idx_as_vec2(map_size_lg, chunk_idx)),
                                (neighbor_idx, uniform_idx_as_vec2(map_size_lg, neighbor_idx))
                            ),
                            (
                                (
                                    lake_chunk_idx,
                                    uniform_idx_as_vec2(map_size_lg, lake_chunk_idx),
                                    lake_idx_
                                ),
                                (
                                    neighbor_lake_chunk_idx,
                                    uniform_idx_as_vec2(map_size_lg, neighbor_lake_chunk_idx),
                                    neighbor_lake_idx_
                                )
                            ),
                            (
                                (pass.0, uniform_idx_as_vec2(map_size_lg, pass.0 as usize)),
                                (pass.1, uniform_idx_as_vec2(map_size_lg, pass.1 as usize))
                            ),
                        );
                    }
                }
            }
        });
    });

    // Now it's time to calculate the lake connections graph T_L covering G_L.
    let mut candidates = BinaryHeap::with_capacity(indirection.len());
    // let mut pass_flows : Vec<i32> = vec![-1; indirection.len()];

    // We start by going through each pass, deleting the ones that point out of
    // boundary nodes and adding ones that point into boundary nodes from
    // non-boundary nodes.
    lakes.iter_mut().for_each(|edge| {
        let edge: &mut (i32, u32) = edge;
        // Only consider valid elements.
        if edge.0 == -1 {
            return;
        }
        // Check to see if this edge points out *from* a boundary node.
        // Delete it if so.
        let from = edge.0 as usize;
        let indirection_idx = indirection[from];
        let lake_idx = if indirection_idx < 0 {
            from
        } else {
            indirection_idx as usize
        };
        if downhill[lake_idx] == -2 {
            edge.0 = -1;
            return;
        }
        // This edge is not pointing out from a boundary node.
        // Check to see if this edge points *to* a boundary node.
        // Add it to the candidate set if so.
        let to = edge.1 as usize;
        let indirection_idx = indirection[to];
        let lake_idx = if indirection_idx < 0 {
            to
        } else {
            indirection_idx as usize
        };
        if downhill[lake_idx] == -2 {
            // Find the pass height
            let pass = h(from).max(h(to));
            candidates.push(Reverse((
                NotNan::new(pass).unwrap(),
                (edge.0 as u32, edge.1),
            )));
        }
    });

    let mut pass_flows_sorted: Vec<usize> = Vec::with_capacity(indirection.len());

    // Now all passes pointing to the boundary are in candidates.
    // As long as there are still candidates, we continue...
    // NOTE: After a lake is added to the stream tree, the lake bottom's indirection
    // entry no longer negates its maximum number of passes, but the lake side
    // of the chosen pass.  As such, we should make sure not to rely on using it
    // this way afterwards. provides information about the number of candidate
    // passes in a lake.
    while let Some(Reverse((_, (chunk_idx, neighbor_idx)))) = candidates.pop() {
        // We have the smallest candidate.
        let lake_idx = indirection_[chunk_idx as usize] as usize;
        let indirection_idx = indirection[chunk_idx as usize];
        let lake_chunk_idx = if indirection_idx >= 0 {
            indirection_idx as usize
        } else {
            chunk_idx as usize
        };
        if downhill[lake_chunk_idx] >= 0 {
            // Candidate lake has already been connected.
            continue;
        }
        assert_eq!(downhill[lake_chunk_idx], -1);
        // Candidate lake has not yet been connected, and is the lowest candidate.
        // Delete all other outgoing edges.
        let max_len = -if indirection_idx < 0 {
            indirection_idx
        } else {
            indirection[indirection_idx as usize]
        } as usize;
        // Add this chunk to the tree.
        downhill[lake_chunk_idx] = neighbor_idx as isize;
        // Also set the indirection of the lake bottom to the negation of the
        // lake side of the chosen pass (chunk_idx).
        // NOTE: This can't overflow i32 because map_size_lg.chunks_len() should fit
        // in an i32.
        indirection[lake_chunk_idx] = -(chunk_idx as i32);
        // Add this edge to the sorted list.
        pass_flows_sorted.push(lake_chunk_idx);
        // pass_flows_sorted.push((chunk_idx as u32, neighbor_idx as u32));
        for edge in &mut lakes[lake_idx..lake_idx + max_len] {
            if *edge == (chunk_idx as i32, neighbor_idx) {
                // Skip deleting this edge.
                continue;
            }
            // Delete the old edge, and remember it.
            let edge = mem::replace(edge, (-1, 0));
            if edge.0 == -1 {
                // Don't fall off the end of the list.
                break;
            }
            // Don't add incoming pointers from already-handled lakes or boundary nodes.
            let indirection_idx = indirection[edge.1 as usize];
            let neighbor_lake_idx = if indirection_idx < 0 {
                edge.1 as usize
            } else {
                indirection_idx as usize
            };
            if downhill[neighbor_lake_idx] != -1 {
                continue;
            }
            // Find the pass height
            let pass = h(edge.0 as usize).max(h(edge.1 as usize));
            // Put the reverse edge in candidates, sorted by height, then chunk idx, and
            // finally neighbor idx.
            candidates.push(Reverse((
                NotNan::new(pass).unwrap(),
                (edge.1, edge.0 as u32),
            )));
        }
    }
    debug!("Total lakes: {:?}", pass_flows_sorted.len());

    // Perform the bfs once again.
    #[derive(Clone, Copy, PartialEq)]
    enum Tag {
        UnParsed,
        InQueue,
        WithRcv,
    }
    let mut tag = vec![Tag::UnParsed; map_size_lg.chunks_len()];
    // TODO: Combine with adding to vector.
    let mut filling_queue = Vec::with_capacity(downhill.len());

    let mut newh = Vec::with_capacity(downhill.len());
    (*boundary)
        .iter()
        .chain(pass_flows_sorted.iter())
        .for_each(|&chunk_idx| {
            // Find all the nodes uphill from this lake.  Since there is only one outgoing
            // edge in the "downhill" graph, this is guaranteed never to visit a
            // node more than once.
            let mut start = newh.len();
            // First, find the neighbor pass (assuming this is not the ocean).
            let neighbor_pass_idx = downhill[chunk_idx];
            let first_idx = if neighbor_pass_idx < 0 {
                // This is the ocean.
                newh.push(chunk_idx as u32);
                start += 1;
                chunk_idx
            } else {
                // This is a "real" lake.
                let neighbor_pass_idx = neighbor_pass_idx as usize;
                // Let's find our side of the pass.
                let pass_idx = -indirection[chunk_idx];
                // NOTE: Since only lakes are on the boundary, this should be a valid array
                // index.
                assert!(pass_idx >= 0);
                let pass_idx = pass_idx as usize;
                // Now, we should recompute flow paths so downhill nodes are contiguous.

                /* // Carving strategy: reverse the path from the lake side of the pass to the
                // lake bottom, and also set the lake side of the pass's downhill to its
                // neighbor pass.
                let mut to_idx = neighbor_pass_idx;
                let mut from_idx = pass_idx;
                // NOTE: Since our side of the lake pass must be in the same basin as chunk_idx,
                // and chunk_idx is the basin bottom, we must reach it before we reach an ocean
                // node or other node with an invalid index.
                while from_idx != chunk_idx {
                    // Reverse this (from, to) edge by first replacing to_idx with from_idx,
                    // then replacing from_idx's downhill with the old to_idx, and finally
                    // replacing from_idx with from_idx's old downhill.
                    //
                    // println!("Reversing (lake={:?}): to={:?}, from={:?}, dh={:?}", chunk_idx, to_idx, from_idx, downhill[from_idx]);
                    from_idx = mem::replace(
                        &mut downhill[from_idx],
                        mem::replace(
                            &mut to_idx,
                            // NOTE: This cast should be valid since the node is either a path on the way
                            // to a lake bottom, or a lake bottom with an actual pass outwards.
                            from_idx
                        ) as isize,
                    ) as usize;
                }
                // Remember to set the actual lake's from_idx properly!
                downhill[from_idx] = to_idx as isize; */

                // TODO: Enqueue onto newh simultaneously with filling (this could help prevent
                // needing a special tag just for checking if we are already enqueued).
                // Filling strategy: nodes are assigned paths based on cost.
                {
                    assert!(tag[pass_idx] == Tag::UnParsed);

                    filling_queue.push(pass_idx);
                    tag[neighbor_pass_idx] = Tag::WithRcv;
                    tag[pass_idx] = Tag::InQueue;

                    let outflow_coords = uniform_idx_as_vec2(map_size_lg, neighbor_pass_idx);
                    let elev = h(neighbor_pass_idx).max(h(pass_idx));

                    while let Some(node) = filling_queue.pop() {
                        let coords = uniform_idx_as_vec2(map_size_lg, node);

                        let mut rcv = -1;
                        let mut rcv_cost = -f64::INFINITY; /*f64::EPSILON;*/
                        let outflow_distance = (outflow_coords - coords).map(|e| e as f64);

                        neighbors(map_size_lg, node).for_each(|ineighbor| {
                            if indirection[ineighbor] != chunk_idx as i32
                                && ineighbor != chunk_idx
                                && ineighbor != neighbor_pass_idx
                                || h(ineighbor) > elev
                            {
                                return;
                            }
                            let dxy = (uniform_idx_as_vec2(map_size_lg, ineighbor) - coords)
                                .map(|e| e as f64);
                            let neighbor_distance = /*neighbor_coef * */dxy;
                            let tag = &mut tag[ineighbor];
                            match *tag {
                                Tag::WithRcv => {
                                    // TODO: Remove outdated comment.
                                    //
                                    // vec_to_outflow ⋅ (vec_to_neighbor / |vec_to_neighbor|) =
                                    // ||vec_to_outflow||cos Θ
                                    //   where θ is the angle between vec_to_outflow and
                                    // vec_to_neighbor.
                                    //
                                    // Which is also the scalar component of vec_to_outflow in the
                                    // direction of vec_to_neighbor.
                                    let cost = outflow_distance
                                        .dot(neighbor_distance / neighbor_distance.magnitude());
                                    if cost > rcv_cost {
                                        rcv = ineighbor as isize;
                                        rcv_cost = cost;
                                    }
                                },
                                Tag::UnParsed => {
                                    filling_queue.push(ineighbor);
                                    *tag = Tag::InQueue;
                                },
                                _ => {},
                            }
                        });
                        assert_ne!(rcv, -1);
                        downhill[node] = rcv;
                        tag[node] = Tag::WithRcv;
                    }
                }

                // Use our side of the pass as the initial node in the stack order.
                // TODO: Verify that this stack order will not "double reach" any lake chunks.
                neighbor_pass_idx
            };
            // New lake root
            let mut cur = start;
            let mut node = first_idx;
            loop {
                uphill(map_size_lg, downhill, node).for_each(|child| {
                    // lake_idx is the index of our lake root.
                    // Check to make sure child (flowing into us) is in the same lake.
                    if indirection[child] == chunk_idx as i32 || child == chunk_idx {
                        newh.push(child as u32);
                    }
                });

                if cur == newh.len() {
                    break;
                }
                node = newh[cur] as usize;
                cur += 1;
            }
        });
    assert_eq!(newh.len(), downhill.len());
    (boundary.len(), indirection, newh.into_boxed_slice(), maxh)
}

/// Iterate through set neighbors of multi-receiver flow.
pub fn mrec_downhill(
    map_size_lg: MapSizeLg,
    mrec: &[u8],
    posi: usize,
) -> impl Clone + Iterator<Item = (usize, usize)> {
    let pos = uniform_idx_as_vec2(map_size_lg, posi);
    let mrec_i = mrec[posi];
    NEIGHBOR_DELTA
        .iter()
        .enumerate()
        .filter(move |&(k, _)| (mrec_i >> k as isize) & 1 == 1)
        .map(move |(k, &(x, y))| {
            (
                k,
                vec2_as_uniform_idx(map_size_lg, Vec2::new(pos.x + x, pos.y + y)),
            )
        })
}

/// Algorithm for computing multi-receiver flow.
///
/// * `map_size_lg`: Size of the underlying map.
/// * `h`: altitude
/// * `downhill`: single receiver
/// * `newh`: single receiver stack
/// * `wh`: buffer into which water height will be inserted.
/// * `nx`, `ny`: resolution in x and y directions.
/// * `dx`, `dy`: grid spacing in x- and y-directions
/// * `maxh`: maximum |height| among all nodes.
///
///
/// Updates the water height to a nearly planar surface, and returns a 3-tuple
/// containing:
/// * A bitmask representing which neighbors are downhill.
/// * Stack order for multiple receivers (from top to bottom).
/// * The weight for each receiver, for each node.
pub fn get_multi_rec<F: fmt::Debug + Float + Sync + Into<Compute>>(
    map_size_lg: MapSizeLg,
    h: impl Fn(usize) -> F + Sync,
    downhill: &[isize],
    newh: &[u32],
    wh: &mut [F],
    nx: usize,
    ny: usize,
    dx: Compute,
    dy: Compute,
    _maxh: F,
    threadpool: &rayon::ThreadPool,
) -> (Box<[u8]>, Box<[u32]>, Box<[Computex8]>) {
    let nn = nx * ny;
    let dxdy = Vec2::new(dx, dy);

    /* // set bc
    let i1 = 0;
    let i2 = nx;
    let j1 = 0;
    let j2 = ny;
    let xcyclic = false;
    let ycyclic = false; */
    /*
      write (cbc,'(i4)') ibc
      i1=1
      i2=nx
      j1=1
      j2=ny
      if (cbc(4:4).eq.'1') i1=2
      if (cbc(2:2).eq.'1') i2=nx-1
      if (cbc(1:1).eq.'1') j1=2
      if (cbc(3:3).eq.'1') j2=ny-1
      xcyclic=.FALSE.
      ycyclic=.FALSE.
      if (cbc(4:4).ne.'1'.and.cbc(2:2).ne.'1') xcyclic=.TRUE.
      if (cbc(1:1).ne.'1'.and.cbc(3:3).ne.'1') ycyclic=.TRUE.
    */
    assert_eq!(nn, wh.len());

    // fill the local minima with a nearly planar surface
    // See https://matthew-brett.github.io/teaching/floating_error.html;
    // our absolute error is bounded by β^(e-(p-1)), where e is the exponent of the
    // largest value we care about.  In this case, since we are summing up to nn
    // numbers, we are bounded from above by nn * |maxh|; however, we only need
    // to invoke this when we actually encounter a number, so we compute it
    // dynamically. for nn + |maxh|
    // TODO: Consider that it's probably not possible to have a downhill path the
    // size of the whole grid... either measure explicitly (maybe in get_lakes)
    // or work out a more precise upper bound (since using nn * 2 * (maxh +
    // epsilon) makes f32 not work very well).
    let deltah = F::epsilon() + F::epsilon();
    newh.iter().for_each(|&ijk| {
        let ijk = ijk as usize;
        let h_i = h(ijk);
        let ijr = downhill[ijk];
        wh[ijk] = if ijr >= 0 {
            let ijr = ijr as usize;
            let wh_j = wh[ijr];
            if wh_j >= h_i {
                let deltah = deltah * wh_j.abs();
                wh_j + deltah
            } else {
                h_i
            }
        } else {
            h_i
        };
    });

    let mut wrec = Vec::<Computex8>::with_capacity(nn);
    let mut mrec = Vec::with_capacity(nn);
    let mut don_vis = Vec::with_capacity(nn);

    // loop on all nodes
    (0..nn)
        .into_par_iter()
        .map(|ij| {
            // TODO: SIMDify?  Seems extremely amenable to that.
            let wh_ij = wh[ij];
            let mut mrec_ij = 0u8;
            let mut ndon_ij = 0u8;
            let neighbor_iter = |posi| {
                let pos = uniform_idx_as_vec2(map_size_lg, posi);
                NEIGHBOR_DELTA
                    .iter()
                    .map(move |&(x, y)| Vec2::new(pos.x + x, pos.y + y))
                    .enumerate()
                    .filter(move |&(_, pos)| {
                        pos.x >= 0 && pos.y >= 0 && pos.x < nx as i32 && pos.y < ny as i32
                    })
                    .map(move |(k, pos)| (k, vec2_as_uniform_idx(map_size_lg, pos)))
            };

            neighbor_iter(ij).for_each(|(k, ijk)| {
                let wh_ijk = wh[ijk];
                if wh_ij > wh_ijk {
                    // Set neighboring edge lower than this one as being downhill.
                    // NOTE: relying on at most 8 neighbors.
                    mrec_ij |= 1 << k;
                } else if wh_ijk > wh_ij {
                    // Avoiding ambiguous cases.
                    ndon_ij += 1;
                }
            });
            (mrec_ij, (ndon_ij, ndon_ij))
        })
        .unzip_into_vecs(&mut mrec, &mut don_vis);

    let czero = <Compute as Zero>::zero();
    let (wrec, stack) = threadpool.join(
        || {
            (0..nn)
                .into_par_iter()
                .map(|ij| {
                    let mut sumweight = czero;
                    let mut wrec = [czero; 8];
                    let mut nrec = 0;
                    mrec_downhill(map_size_lg, &mrec, ij).for_each(|(k, ijk)| {
                        let lrec_ijk = ((uniform_idx_as_vec2(map_size_lg, ijk)
                            - uniform_idx_as_vec2(map_size_lg, ij))
                        .map(|e| e as Compute)
                            * dxdy)
                            .magnitude();
                        let wrec_ijk = (wh[ij] - wh[ijk]).into() / lrec_ijk;
                        // NOTE: To emulate single-direction flow, uncomment this line.
                        // let wrec_ijk = if ijk as isize == downhill[ij] { <Compute as One>::one()
                        // } else { <Compute as Zero>::zero() };
                        wrec[k] = wrec_ijk;
                        sumweight += wrec_ijk;
                        nrec += 1;
                    });
                    let slope = sumweight / (nrec as Compute).max(1.0);
                    let p_mfd_exp = 0.5 + 0.6 * slope;
                    sumweight = czero;
                    wrec.iter_mut().for_each(|wrec_k| {
                        let wrec_ijk = wrec_k.powf(p_mfd_exp);
                        sumweight += wrec_ijk;
                        *wrec_k = wrec_ijk;
                    });
                    if sumweight > czero {
                        wrec.iter_mut().for_each(|wrec_k| {
                            *wrec_k /= sumweight;
                        });
                    }
                    wrec
                })
                .collect_into_vec(&mut wrec);
            wrec
        },
        || {
            let mut stack = Vec::with_capacity(nn);
            let mut parse = Vec::with_capacity(nn);

            // we go through the nodes
            (0..nn).for_each(|ij| {
                let (ndon_ij, _) = don_vis[ij];
                // when we find a "summit" (ie a node that has no donors)
                // we parse it (put it in a stack called parse)
                if ndon_ij == 0 {
                    parse.push(ij);
                }
                // we go through the parsing stack
                while let Some(ijn) = parse.pop() {
                    // we add the node to the stack
                    stack.push(ijn as u32);
                    mrec_downhill(map_size_lg, &mrec, ijn).for_each(|(_, ijr)| {
                        let (_, ref mut vis_ijr) = don_vis[ijr];
                        if *vis_ijr >= 1 {
                            *vis_ijr -= 1;
                            if *vis_ijr == 0 {
                                parse.push(ijr);
                            }
                        }
                    });
                }
            });

            assert_eq!(stack.len(), nn);
            stack
        },
    );

    (
        mrec.into_boxed_slice(),
        stack.into_boxed_slice(),
        wrec.into_boxed_slice(),
    )
}

/// Perform erosion n times.
#[allow(clippy::too_many_arguments)]
pub fn do_erosion(
    map_size_lg: MapSizeLg,
    _max_uplift: f32,
    n_steps: usize,
    seed: &RandomField,
    rock_strength_nz: &(impl NoiseFn<f64, 3> + Sync),
    oldh: impl Fn(usize) -> f32 + Sync,
    oldb: impl Fn(usize) -> f32 + Sync,
    is_ocean: impl Fn(usize) -> bool + Sync,
    uplift: impl Fn(usize) -> f64 + Sync,
    n: impl Fn(usize) -> f32 + Sync,
    theta: impl Fn(usize) -> f32 + Sync,
    kf: impl Fn(usize) -> f64 + Sync,
    kd: impl Fn(usize) -> f64 + Sync,
    g: impl Fn(usize) -> f32 + Sync,
    epsilon_0: impl Fn(usize) -> f32 + Sync,
    alpha: impl Fn(usize) -> f32 + Sync,
    // scaling factors
    height_scale: impl Fn(f32) -> Alt + Sync,
    k_d_scale: f64,
    k_da_scale: impl Fn(f64) -> f64,
    threadpool: &rayon::ThreadPool,
    report_progress: &dyn Fn(f64),
) -> (Box<[Alt]>, Box<[Alt]> /* , Box<[Alt]> */) {
    debug!("Initializing erosion arrays...");
    let oldh_ = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(|posi| oldh(posi) as Alt)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    // Topographic basement (The height of bedrock, not including sediment).
    let mut b = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(|posi| oldb(posi) as Alt)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    // Stream power law slope exponent--link between channel slope and erosion rate.
    let n = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(&n)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    // Stream power law concavity index (θ = m/n), turned into an exponent on
    // drainage (which is a proxy for discharge according to Hack's Law).
    let m = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(|posi| theta(posi) * n[posi])
        .collect::<Vec<_>>()
        .into_boxed_slice();
    // Stream power law erodability constant for fluvial erosion (bedrock)
    let kf = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(&kf)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    // Stream power law erodability constant for hillslope diffusion (bedrock)
    let kd = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(&kd)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    // Deposition coefficient
    let g = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(&g)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    let epsilon_0 = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(&epsilon_0)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    let alpha = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(&alpha)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    let mut wh = vec![0.0; map_size_lg.chunks_len()].into_boxed_slice();
    // TODO: Don't do this, maybe?
    // (To elaborate, maybe we should have varying uplift or compute it some other
    // way).
    let uplift = (0..oldh_.len())
        .into_par_iter()
        .map(|posi| uplift(posi) as f32)
        .collect::<Vec<_>>()
        .into_boxed_slice();
    let sum_uplift = uplift
        .into_par_iter()
        .cloned()
        .map(|e| e as f64)
        .sum::<f64>();
    debug!("Sum uplifts: {:?}", sum_uplift);

    let max_uplift = uplift
        .into_par_iter()
        .cloned()
        .max_by(|a, b| a.partial_cmp(b).unwrap())
        .unwrap();
    let max_g = g
        .into_par_iter()
        .cloned()
        .max_by(|a, b| a.partial_cmp(b).unwrap())
        .unwrap();
    debug!("Max uplift: {:?}", max_uplift);
    debug!("Max g: {:?}", max_g);
    // Height of terrain, including sediment.
    let mut h = oldh_;
    // Bedrock transport coefficients (diffusivity) in m^2 / year, for sediment.
    // For now, we set them all to be equal
    // on land, but in theory we probably want to at least differentiate between
    // soil, bedrock, and sediment.
    let kdsed = 1.5e-2 / 4.0;
    let kdsed = kdsed * k_d_scale;
    let n = |posi: usize| n[posi];
    let m = |posi: usize| m[posi];
    let kd = |posi: usize| kd[posi];
    let kf = |posi: usize| kf[posi];
    let g = |posi: usize| g[posi];
    let epsilon_0 = |posi: usize| epsilon_0[posi];
    let alpha = |posi: usize| alpha[posi];

    (0..n_steps).for_each(|i| {
        debug!("Erosion iteration #{:?}", i);

        // Print out the percentage complete. Do this at most 20 times.
        if i % std::cmp::max(n_steps / 20, 1) == 0 {
            let pct = (i as f64 / n_steps as f64) * 100.0;
            report_progress(pct);
            info!("{:.2}% complete", pct);
        }

        erode(
            map_size_lg,
            &mut h,
            &mut b,
            &mut wh,
            max_uplift,
            max_g,
            kdsed,
            seed,
            rock_strength_nz,
            |posi| uplift[posi],
            n,
            m,
            kf,
            kd,
            g,
            epsilon_0,
            alpha,
            &is_ocean,
            &height_scale,
            &k_da_scale,
            threadpool,
        );
    });
    (h, b)
}