1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
use bitvec::prelude::{bitbox, BitBox};
use common::{
    terrain::{neighbors, uniform_idx_as_vec2, vec2_as_uniform_idx, MapSizeLg, TerrainChunkSize},
    vol::RectVolSize,
};
use common_base::prof_span;
use noise::{
    core::worley::*, math::vectors::*, permutationtable::PermutationTable, MultiFractal, NoiseFn,
    Seedable,
};
use num::Float;
use rayon::prelude::*;
use std::sync::Arc;
use vek::*;

/// Calculates the smallest distance along an axis (x, y) from an edge of
/// the world.  This value is maximal at map_size_lg.chunks() / 2 and
/// minimized at the
/// extremes (0 or map_size_lg.chunks() on one or more axes).  It then divides
/// the quantity by cell_size, so the final result is 1 when we are not in a
/// cell along the edge of the world, and ranges between 0 and 1 otherwise
/// (lower when the chunk is closer to the edge).
pub fn map_edge_factor(map_size_lg: MapSizeLg, posi: usize) -> f32 {
    uniform_idx_as_vec2(map_size_lg, posi)
        .map2(map_size_lg.chunks().map(i32::from), |e, sz| {
            (sz / 2 - (e - sz / 2).abs()) as f32 / (16.0 / 1024.0 * sz as f32)
        })
        .reduce_partial_min()
        .clamp(0.0, 1.0)
}

/// Computes the cumulative distribution function of the weighted sum of k
/// independent, uniformly distributed random variables between 0 and 1.  For
/// each variable i, we use `weights[i]` as the weight to give `samples[i]` (the
/// weights should all be positive).
///
/// If the precondition is met, the distribution of the result of calling this
/// function will be uniformly distributed while preserving the same information
/// that was in the original average.
///
/// For N > 33 the function will no longer return correct results since we will
/// overflow u32.
///
/// NOTE:
///
/// Per [[1]], the problem of determining the CDF of
/// the sum of uniformly distributed random variables over *different* ranges is
/// considerably more complicated than it is for the same-range case.
/// Fortunately, it also provides a reference to [2], which contains a complete
/// derivation of an exact rule for the density function for this case.  The CDF
/// is just the integral of the cumulative distribution function [[3]],
/// which we use to convert this into a CDF formula.
///
/// This allows us to sum weighted, uniform, independent random variables.
///
/// At some point, we should probably contribute this back to stats-rs.
///
/// 1. [https://www.r-bloggers.com/sums-of-random-variables/][1],
/// 2. Sadooghi-Alvandi, S., A. Nematollahi, & R. Habibi, 2009. On the
///    Distribution of the Sum of Independent Uniform Random Variables.
///    Statistical Papers, 50, 171-175.
/// 3. [https://en.wikipedia.org/wiki/Cumulative_distribution_function][3]
///
/// [1]: https://www.r-bloggers.com/sums-of-random-variables/
/// [3]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
pub fn cdf_irwin_hall<const N: usize>(weights: &[f32; N], samples: [f32; N]) -> f32 {
    // Let J_k = {(j_1, ... , j_k) : 1 ≤ j_1 < j_2 < ··· < j_k ≤ N }.
    //
    // Let A_N = Π{k = 1 to n}a_k.
    //
    // The density function for N ≥ 2 is:
    //
    //   1/(A_N * (N - 1)!) * (x^(N-1) + Σ{k = 1 to N}((-1)^k *
    //   Σ{(j_1, ..., j_k) ∈ J_k}(max(0, x - Σ{l = 1 to k}(a_(j_l)))^(N - 1))))
    //
    // So the cumulative distribution function is its integral, i.e. (I think)
    //
    // 1/(product{k in A}(k) * N!) * (x^N + sum(k in 1 to N)((-1)^k *
    // sum{j in Subsets[A, {k}]}(max(0, x - sum{l in j}(l))^N)))
    //
    // which is also equivalent to
    //
    //   (letting B_k = { a in Subsets[A, {k}] : sum {l in a} l }, B_(0,1) = 0 and
    //            H_k = { i : 1 ≤ 1 ≤ N! / (k! * (N - k)!) })
    //
    //   1/(product{k in A}(k) * N!) * sum(k in 0 to N)((-1)^k *
    //   sum{l in H_k}(max(0, x - B_(k,l))^N))
    //
    // We should be able to iterate through the whole power set
    // instead, and figure out K by calling count_ones(), so we can compute the
    // result in O(2^N) iterations.
    let x: f64 = weights
        .iter()
        .zip(samples.iter())
        .map(|(&weight, &sample)| weight as f64 * sample as f64)
        .sum();

    let mut y = 0.0f64;
    for subset in 0u32..(1 << N) {
        // Number of set elements
        let k = subset.count_ones();
        // Add together exactly the set elements to get B_subset
        let z = weights
            .iter()
            .enumerate()
            .filter(|(i, _)| subset & (1 << i) as u32 != 0)
            .map(|(_, &k)| k as f64)
            .sum::<f64>();
        // Compute max(0, x - B_subset)^N
        let z = (x - z).max(0.0).powi(N as i32);
        // The parity of k determines whether the sum is negated.
        y += if k & 1 == 0 { z } else { -z };
    }

    // Divide by the product of the weights.
    y /= weights.iter().map(|&k| k as f64).product::<f64>();

    // Remember to multiply by 1 / N! at the end.
    (y / (1..(N as i32) + 1).product::<i32>() as f64) as f32
}

/// First component of each element of the vector is the computed CDF of the
/// noise function at this index (i.e. its position in a sorted list of value
/// returned by the noise function applied to every chunk in the game).  Second
/// component is the cached value of the noise function that generated the
/// index.
pub type InverseCdf<F = f32> = Box<[(f32, F)]>;

/// NOTE: First component is estimated horizon angles at each chunk; second
/// component is estimated       heights of maximal occluder at each chunk (used
/// for making shadows volumetric).
pub type HorizonMap<A, H> = (Vec<A>, Vec<H>);

/// Compute inverse cumulative distribution function for arbitrary function f,
/// the hard way.  We pre-generate noise values prior to worldgen, then sort
/// them in order to determine the correct position in the sorted order.  That
/// lets us use `(index + 1) / (WORLDSIZE.y * WORLDSIZE.x)` as a uniformly
/// distributed (from almost-0 to 1) regularization of the chunks.  That is, if
/// we apply the computed "function" F⁻¹(x, y) to (x, y) and get out p, it means
/// that approximately (100 * p)% of chunks have a lower value for F⁻¹ than p.
/// The main purpose of doing this is to make sure we are using the entire range
/// we want, and to allow us to apply the numerous results about distributions
/// on uniform functions to the procedural noise we generate, which lets us much
/// more reliably control the *number* of features in the world while still
/// letting us play with the *shape* of those features, without having arbitrary
/// cutoff points / discontinuities (which tend to produce ugly-looking /
/// unnatural terrain).
///
/// As a concrete example, before doing this it was very hard to tweak humidity
/// so that either most of the world wasn't dry, or most of it wasn't wet, by
/// combining the billow noise function and the computed altitude.  This is
/// because the billow noise function has a very unusual distribution that is
/// heavily skewed towards 0.  By correcting for this tendency, we can start
/// with uniformly distributed billow noise and altitudes and combine them to
/// get uniformly distributed humidity, while still preserving the existing
/// shapes that the billow noise and altitude functions produce.
///
/// f takes an index, which represents the index corresponding to this chunk in
/// any any SimChunk vector returned by uniform_noise, and (for convenience) the
/// float-translated version of those coordinates.
/// f should return a value with no NaNs.  If there is a NaN, it will panic.
/// There are no other conditions on f.  If f returns None, the value will be
/// set to NaN, and will be ignored for the purposes of computing the uniform
/// range.
///
/// Returns a vec of (f32, f32) pairs consisting of the percentage of chunks
/// with a value lower than this one, and the actual noise value (we don't need
/// to cache it, but it makes ensuring that subsequent code that needs the noise
/// value actually uses the same one we were using here easier).  Also returns
/// the "inverted index" pointing from a position to a noise.
pub fn uniform_noise<F: Float + Send>(
    map_size_lg: MapSizeLg,
    f: impl Fn(usize, Vec2<f64>) -> Option<F> + Sync,
) -> (InverseCdf<F>, Box<[(usize, F)]>) {
    let mut noise = (0..map_size_lg.chunks_len())
        .into_par_iter()
        .filter_map(|i| {
            f(
                i,
                (uniform_idx_as_vec2(map_size_lg, i)
                    * TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
                .map(|e| e as f64),
            )
            .map(|res| (i, res))
        })
        .collect::<Vec<_>>();

    // sort_unstable_by is equivalent to sort_by here since we include a unique
    // index in the comparison.  We could leave out the index, but this might
    // make the order not reproduce the same way between different versions of
    // Rust (for example).
    noise.par_sort_unstable_by(|f, g| (f.1, f.0).partial_cmp(&(g.1, g.0)).unwrap());

    // Construct a vector that associates each chunk position with the 1-indexed
    // position of the noise in the sorted vector (divided by the vector length).
    // This guarantees a uniform distribution among the samples (excluding those
    // that returned None, which will remain at zero).
    let mut uniform_noise = vec![(0.0, F::nan()); map_size_lg.chunks_len()].into_boxed_slice();
    // NOTE: Consider using try_into here and elsewhere in this function, since
    // i32::MAX technically doesn't fit in an f32 (even if we should never reach
    // that limit).
    let total = noise.len() as f32;
    for (noise_idx, &(chunk_idx, noise_val)) in noise.iter().enumerate() {
        uniform_noise[chunk_idx] = ((1 + noise_idx) as f32 / total, noise_val);
    }
    (uniform_noise, noise.into_boxed_slice())
}

/// Iterate through all cells adjacent and including four chunks whose top-left
/// point is posi. This isn't just the immediate neighbors of a chunk plus the
/// center, because it is designed to cover neighbors of a point in the chunk's
/// "interior."
///
/// This is what's used during cubic interpolation, for example, as it
/// guarantees that for any point between the given chunk (on the top left) and
/// its top-right/down-right/down neighbors, the twelve chunks surrounding this
/// box (its "perimeter") are also inspected.
pub fn local_cells(map_size_lg: MapSizeLg, posi: usize) -> impl Clone + Iterator<Item = usize> {
    let pos = uniform_idx_as_vec2(map_size_lg, posi);
    // NOTE: want to keep this such that the chunk index is in ascending order!
    let grid_size = 3i32;
    let grid_bounds = 2 * grid_size + 1;
    (0..grid_bounds * grid_bounds)
        .map(move |index| {
            Vec2::new(
                pos.x + (index % grid_bounds) - grid_size,
                pos.y + (index / grid_bounds) - grid_size,
            )
        })
        .filter(move |pos| {
            pos.x >= 0
                && pos.y >= 0
                && pos.x < map_size_lg.chunks().x as i32
                && pos.y < map_size_lg.chunks().y as i32
        })
        .map(move |e| vec2_as_uniform_idx(map_size_lg, e))
}

// Note that we should already have okay cache locality since we have a grid.
pub fn uphill(
    map_size_lg: MapSizeLg,
    dh: &[isize],
    posi: usize,
) -> impl Clone + Iterator<Item = usize> + '_ {
    neighbors(map_size_lg, posi).filter(move |&posj| dh[posj] == posi as isize)
}

/// Compute the neighbor "most downhill" from all chunks.
///
/// TODO: See if allocating in advance is worthwhile.
pub fn downhill<F: Float>(
    map_size_lg: MapSizeLg,
    h: impl Fn(usize) -> F + Sync,
    is_ocean: impl Fn(usize) -> bool + Sync,
) -> Box<[isize]> {
    // Constructs not only the list of downhill nodes, but also computes an ordering
    // (visiting nodes in order from roots to leaves).
    (0..map_size_lg.chunks_len())
        .into_par_iter()
        .map(|posi| {
            let nh = h(posi);
            if is_ocean(posi) {
                -2
            } else {
                let mut best = -1;
                let mut besth = nh;
                for nposi in neighbors(map_size_lg, posi) {
                    let nbh = h(nposi);
                    if nbh < besth {
                        besth = nbh;
                        best = nposi as isize;
                    }
                }
                best
            }
        })
        .collect::<Vec<_>>()
        .into_boxed_slice()
}

/* /// Bilinear interpolation.
///
/// Linear interpolation in both directions (i.e. quadratic interpolation).
fn get_interpolated_bilinear<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
    where
        T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
        F: FnMut(Vec2<i32>) -> Option<T>,
{
    // (i) Find downhill for all four points.
    // (ii) Compute distance from each downhill point and do linear interpolation on
    // their heights. (iii) Compute distance between each neighboring point
    // and do linear interpolation on       their distance-interpolated
    // heights.

    // See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
    //
    // Note that these are only guaranteed monotone in one dimension; fortunately,
    // that is sufficient for our purposes.
    let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
        e as f64 / sz as f64
    });

    // Orient the chunk in the direction of the most downhill point of the four.  If
    // there is no "most downhill" point, then we don't care.
    let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q);
    let y0 = f(x0)?;

    let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q);
    let y1 = f(x1)?;

    let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q);
    let y2 = f(x2)?;

    let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q);
    let y3 = f(x3)?;

    let z0 = y0
        .mul(1.0 - pos.x.fract() as f32)
        .mul(1.0 - pos.y.fract() as f32);
    let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32);
    let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32);
    let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32);

    Some(z0 + z1 + z2 + z3)
} */

/// Find all ocean tiles from a height map, using an inductive definition of
/// ocean as one of:
/// - posi is at the side of the world (map_edge_factor(posi) == 0.0)
/// - posi has a neighboring ocean tile, and has a height below sea level
///   (oldh(posi) <= 0.0).
pub fn get_oceans<F: Float>(map_size_lg: MapSizeLg, oldh: impl Fn(usize) -> F + Sync) -> BitBox {
    // We can mark tiles as ocean candidates by scanning row by row, since the top
    // edge is ocean, the sides are connected to it, and any subsequent ocean
    // tiles must be connected to it.
    let mut is_ocean = bitbox![0; map_size_lg.chunks_len()];
    let mut stack = Vec::new();
    let mut do_push = |pos| {
        let posi = vec2_as_uniform_idx(map_size_lg, pos);
        if oldh(posi) <= F::zero() {
            stack.push(posi);
        }
    };
    for x in 0..map_size_lg.chunks().x as i32 {
        do_push(Vec2::new(x, 0));
        do_push(Vec2::new(x, map_size_lg.chunks().y as i32 - 1));
    }
    for y in 1..map_size_lg.chunks().y as i32 - 1 {
        do_push(Vec2::new(0, y));
        do_push(Vec2::new(map_size_lg.chunks().x as i32 - 1, y));
    }
    while let Some(chunk_idx) = stack.pop() {
        // println!("Ocean chunk {:?}: {:?}", uniform_idx_as_vec2(map_size_lg,
        // chunk_idx), oldh(chunk_idx));
        let mut is_ocean = is_ocean.get_mut(chunk_idx).unwrap();
        if *is_ocean {
            continue;
        }
        *is_ocean = true;
        stack.extend(neighbors(map_size_lg, chunk_idx).filter(|&neighbor_idx| {
            // println!("Ocean neighbor: {:?}: {:?}", uniform_idx_as_vec2(map_size_lg,
            // neighbor_idx), oldh(neighbor_idx));
            oldh(neighbor_idx) <= F::zero()
        }));
    }
    is_ocean
}

/// Finds the horizon map for sunlight for the given chunks.
#[allow(clippy::result_unit_err)]
pub fn get_horizon_map<F: Float + Sync, A: Send, H: Send>(
    map_size_lg: MapSizeLg,
    bounds: Aabr<i32>,
    minh: F,
    maxh: F,
    h: impl Fn(usize) -> F + Sync,
    to_angle: impl Fn(F) -> A + Sync,
    to_height: impl Fn(F) -> H + Sync,
) -> Result<[HorizonMap<A, H>; 2], ()> {
    prof_span!("get_horizon_map");
    if maxh < minh {
        // maxh must be greater than minh
        return Err(());
    }
    let map_size = Vec2::<i32>::from(bounds.size()).map(|e| e as usize);
    let map_len = map_size.product();

    // Now, do the raymarching.
    let chunk_x = if let Vec2 { x: Some(x), .. } = TerrainChunkSize::RECT_SIZE.map(F::from) {
        x
    } else {
        return Err(());
    };
    // let epsilon = F::epsilon() * if let x = F::from(map_size.x) { x } else {
    // return Err(()) };
    let march = |dx: isize, maxdx: fn(isize, map_size_lg: MapSizeLg) -> isize| {
        let mut angles = Vec::with_capacity(map_len);
        let mut heights = Vec::with_capacity(map_len);
        (0..map_len)
            .into_par_iter()
            .map(|posi| {
                let wposi =
                    bounds.min + Vec2::new((posi % map_size.x) as i32, (posi / map_size.x) as i32);
                if wposi.reduce_partial_min() < 0
                    || wposi.x as usize >= usize::from(map_size_lg.chunks().x)
                    || wposi.y as usize >= usize::from(map_size_lg.chunks().y)
                {
                    return (to_angle(F::zero()), to_height(F::zero()));
                }
                let posi = vec2_as_uniform_idx(map_size_lg, wposi);
                // March in the given direction.
                let maxdx = maxdx(wposi.x as isize, map_size_lg);
                let mut slope = F::zero();
                let h0 = h(posi);
                let h = if h0 < minh {
                    F::zero()
                } else {
                    let mut max_height = F::zero();
                    let maxdz = maxh - h0;
                    let posi = posi as isize;
                    for deltax in 1..maxdx {
                        let posj = (posi + deltax * dx) as usize;
                        let deltax = chunk_x * F::from(deltax).unwrap();
                        let h_j_est = slope * deltax;
                        if h_j_est > maxdz {
                            break;
                        }
                        let h_j_act = h(posj) - h0;
                        if
                        /* h_j_est - h_j_act <= epsilon */
                        h_j_est <= h_j_act {
                            slope = h_j_act / deltax;
                            max_height = h_j_act;
                        }
                    }
                    h0 - minh + max_height
                };
                let a = slope;
                (to_angle(a), to_height(h))
            })
            .unzip_into_vecs(&mut angles, &mut heights);
        (angles, heights)
    };
    let west = march(-1, |x, _| x);
    let east = march(1, |x, map_size_lg| {
        (usize::from(map_size_lg.chunks().x) - x as usize) as isize
    });
    Ok([west, east])
}

fn build_sources<Source>(seed: u32, octaves: usize) -> Vec<Source>
where
    Source: Default + Seedable,
{
    let mut sources = Vec::with_capacity(octaves);
    for x in 0..octaves {
        let source = Source::default();
        sources.push(source.set_seed(seed + x as u32));
    }
    sources
}

/// Noise function that outputs hybrid Multifractal noise.
///
/// The result of this multifractal noise is that valleys in the noise should
/// have smooth bottoms at all altitudes.
///
/// Copied from noise crate to add offset.
#[derive(Clone, Debug)]
pub struct HybridMulti<T> {
    /// Total number of frequency octaves to generate the noise with.
    ///
    /// The number of octaves control the _amount of detail_ in the noise
    /// function. Adding more octaves increases the detail, with the drawback
    /// of increasing the calculation time.
    pub octaves: usize,

    /// The number of cycles per unit length that the noise function outputs.
    pub frequency: f64,

    /// A multiplier that determines how quickly the frequency increases for
    /// each successive octave in the noise function.
    ///
    /// The frequency of each successive octave is equal to the product of the
    /// previous octave's frequency and the lacunarity value.
    ///
    /// A lacunarity of 2.0 results in the frequency doubling every octave. For
    /// almost all cases, 2.0 is a good value to use.
    pub lacunarity: f64,

    /// A multiplier that determines how quickly the amplitudes diminish for
    /// each successive octave in the noise function.
    ///
    /// The amplitude of each successive octave is equal to the product of the
    /// previous octave's amplitude and the persistence value. Increasing the
    /// persistence produces "rougher" noise.
    ///
    /// H = 1.0 - fractal increment = -ln(persistence) / ln(lacunarity).  For
    /// a fractal increment between 0 (inclusive) and 1 (exclusive), keep
    /// persistence between 1 / lacunarity (inclusive, for low fractal
    /// dimension) and 1 (exclusive, for high fractal dimension).
    pub persistence: f64,

    /// An offset that is added to the output of each sample of the underlying
    /// Perlin noise function.  Because each successive octave is weighted in
    /// part by the previous signal's output, increasing the offset will weight
    /// the output more heavily towards 1.0.
    pub offset: f64,

    seed: u32,
    sources: Vec<T>,
    //scale_factor: f64,
}

impl<T> HybridMulti<T>
where
    T: Default + Seedable,
{
    pub const DEFAULT_FREQUENCY: f64 = 2.0;
    pub const DEFAULT_LACUNARITY: f64 = /* std::f64::consts::PI * 2.0 / 3.0 */ 2.0;
    pub const DEFAULT_OCTAVES: usize = 6;
    pub const DEFAULT_OFFSET: f64 = /* 0.25 *//* 0.5 */ 0.7;
    // -ln(2^(-0.25))/ln(2) = 0.25
    // 2^(-0.25) ~ 13/16
    pub const DEFAULT_PERSISTENCE: f64 = /* 0.25 *//* 0.5 */ 13.0 / 16.0;
    pub const DEFAULT_SEED: u32 = 0;
    pub const MAX_OCTAVES: usize = 32;

    pub fn new(seed: u32) -> Self {
        Self {
            seed,
            octaves: Self::DEFAULT_OCTAVES,
            frequency: Self::DEFAULT_FREQUENCY,
            lacunarity: Self::DEFAULT_LACUNARITY,
            persistence: Self::DEFAULT_PERSISTENCE,
            offset: Self::DEFAULT_OFFSET,
            sources: build_sources(seed, Self::DEFAULT_OCTAVES),
            //scale_factor: Self::calc_scale_factor(Self::DEFAULT_PERSISTENCE,
            // Self::DEFAULT_OCTAVES),
        }
    }

    pub fn set_offset(self, offset: f64) -> Self { Self { offset, ..self } }

    #[allow(dead_code)]
    pub fn set_sources(self, sources: Vec<T>) -> Self { Self { sources, ..self } }
    /*fn calc_scale_factor(persistence: f64, octaves: usize) -> f64 {
        let mut result = persistence;

        // Do octave 0
        let mut amplitude = persistence;
        let mut weight = result;
        let mut signal = amplitude;
        weight *= signal;

        result += signal;

        if octaves >= 1 {
            result += (1..=octaves).fold(0.0, |acc, _| {
                amplitude *= persistence;
                weight = weight.max(1.0);
                signal = amplitude;
                weight *= signal;
                acc + signal
            });
        }

        2.0 / result
    }*/
}

impl<T> Default for HybridMulti<T>
where
    T: Default + Seedable,
{
    fn default() -> Self { Self::new(Self::DEFAULT_SEED) }
}

impl<T> MultiFractal for HybridMulti<T>
where
    T: Default + Seedable,
{
    fn set_octaves(self, mut octaves: usize) -> Self {
        if self.octaves == octaves {
            return self;
        }

        octaves = octaves.clamp(1, Self::MAX_OCTAVES);
        Self {
            octaves,
            sources: build_sources(self.seed, octaves),
            //scale_factor: Self::calc_scale_factor(self.persistence, octaves),
            ..self
        }
    }

    fn set_frequency(self, frequency: f64) -> Self { Self { frequency, ..self } }

    fn set_lacunarity(self, lacunarity: f64) -> Self { Self { lacunarity, ..self } }

    fn set_persistence(self, persistence: f64) -> Self {
        Self {
            persistence,
            //scale_factor: Self::calc_scale_factor(persistence, self.octaves),
            ..self
        }
    }
}

impl<T> Seedable for HybridMulti<T>
where
    T: Default + Seedable,
{
    fn set_seed(self, seed: u32) -> Self {
        if self.seed == seed {
            return self;
        }

        Self {
            seed,
            sources: build_sources(seed, self.octaves),
            ..self
        }
    }

    fn seed(&self) -> u32 { self.seed }
}

/// 2-dimensional `HybridMulti` noise
impl<T> NoiseFn<f64, 2> for HybridMulti<T>
where
    T: NoiseFn<f64, 2>,
{
    fn get(&self, point: [f64; 2]) -> f64 {
        let mut point = Vector2::from(point);

        let mut attenuation = self.persistence;

        // First unscaled octave of function; later octaves are scaled.
        point *= self.frequency;
        // Offset and bias to scale into [offset - 1.0, 1.0 + offset] range.
        let bias = 1.0;
        let mut result =
            (self.sources[0].get(point.into_array()) + self.offset) * bias * self.persistence;
        let mut scale = self.persistence;
        let mut weight = result;

        // Spectral construction inner loop, where the fractal is built.
        for x in 1..self.octaves {
            // Prevent divergence.
            weight = weight.min(1.0);

            // Raise the spatial frequency.
            point *= self.lacunarity;

            // Get noise value, and scale it to the [offset - 1.0, 1.0 + offset] range.
            let mut signal = (self.sources[x].get(point.into_array()) + self.offset) * bias;

            // Scale the amplitude appropriately for this frequency.
            signal *= attenuation;

            scale += attenuation;

            // Increase the attenuation for the next octave, to be equal to persistence ^ (x
            // + 1)
            attenuation *= self.persistence;

            // Add it in, weighted by previous octave's noise value.
            result += weight * signal;

            // Update the weighting value.
            weight *= signal;
        }

        // Scale the result to the [-1,1] range
        //result * self.scale_factor
        (result / scale) / bias - self.offset
    }
}

/// 3-dimensional `HybridMulti` noise
impl<T> NoiseFn<f64, 3> for HybridMulti<T>
where
    T: NoiseFn<f64, 3>,
{
    fn get(&self, point: [f64; 3]) -> f64 {
        let mut point = Vector3::from(point);

        let mut attenuation = self.persistence;

        // First unscaled octave of function; later octaves are scaled.
        point *= self.frequency;
        // Offset and bias to scale into [offset - 1.0, 1.0 + offset] range.
        let bias = 1.0;
        let mut result =
            (self.sources[0].get(point.into_array()) + self.offset) * bias * self.persistence;
        let mut scale = self.persistence;
        let mut weight = result;

        // Spectral construction inner loop, where the fractal is built.
        for x in 1..self.octaves {
            // Prevent divergence.
            weight = weight.min(1.0);

            // Raise the spatial frequency.
            point *= self.lacunarity;

            // Get noise value, and scale it to the [0, 1.0] range.
            let mut signal = (self.sources[x].get(point.into_array()) + self.offset) * bias;

            // Scale the amplitude appropriately for this frequency.
            signal *= attenuation;

            scale += attenuation;

            // Increase the attenuation for the next octave, to be equal to persistence ^ (x
            // + 1)
            attenuation *= self.persistence;

            // Add it in, weighted by previous octave's noise value.
            result += weight * signal;

            // Update the weighting value.
            weight *= signal;
        }

        // Scale the result to the [-1,1] range
        //result * self.scale_factor
        (result / scale) / bias - self.offset
    }
}

/// 4-dimensional `HybridMulti` noise
impl<T> NoiseFn<f64, 4> for HybridMulti<T>
where
    T: NoiseFn<f64, 4>,
{
    fn get(&self, point: [f64; 4]) -> f64 {
        let mut point = Vector4::from(point);

        let mut attenuation = self.persistence;

        // First unscaled octave of function; later octaves are scaled.
        point *= self.frequency;
        // Offset and bias to scale into [offset - 1.0, 1.0 + offset] range.
        let bias = 1.0;
        let mut result =
            (self.sources[0].get(point.into_array()) + self.offset) * bias * self.persistence;
        let mut scale = self.persistence;
        let mut weight = result;

        // Spectral construction inner loop, where the fractal is built.
        for x in 1..self.octaves {
            // Prevent divergence.
            weight = weight.min(1.0);

            // Raise the spatial frequency.
            point *= self.lacunarity;

            // Get noise value, and scale it to the [0, 1.0] range.
            let mut signal = (self.sources[x].get(point.into_array()) + self.offset) * bias;

            // Scale the amplitude appropriately for this frequency.
            signal *= attenuation;

            scale += attenuation;

            // Increase the attenuation for the next octave, to be equal to persistence ^ (x
            // + 1)
            attenuation *= self.persistence;

            // Add it in, weighted by previous octave's noise value.
            result += weight * signal;

            // Update the weighting value.
            weight *= signal;
        }

        // Scale the result to the [-1,1] range
        //result * self.scale_factor
        (result / scale) / bias - self.offset
    }
}

/* code used by sharp in future – note: NoiseFn impl probably broken by noise crate upgrade from 0.7 to 0.9
/// Noise function that applies a scaling factor and a bias to the output value
/// from the source function.
///
/// The function retrieves the output value from the source function, multiplies
/// it with the scaling factor, adds the bias to it, then outputs the value.
pub struct ScaleBias<'a, F: 'a> {
    /// Outputs a value.
    pub source: &'a F,

    /// Scaling factor to apply to the output value from the source function.
    /// The default value is 1.0.
    pub scale: f64,

    /// Bias to apply to the scaled output value from the source function.
    /// The default value is 0.0.
    pub bias: f64,
}

impl<'a, F> ScaleBias<'a, F> {
    pub fn new(source: &'a F) -> Self {
        ScaleBias {
            source,
            scale: 1.0,
            bias: 0.0,
        }
    }

    pub fn set_scale(self, scale: f64) -> Self { ScaleBias { scale, ..self } }

    pub fn set_bias(self, bias: f64) -> Self { ScaleBias { bias, ..self } }
}

impl<'a, F: NoiseFn<T> + 'a, T> NoiseFn<T> for ScaleBias<'a, F> {
    #[cfg(not(target_os = "emscripten"))]
    fn get(&self, point: T) -> f64 { (self.source.get(point)).mul_add(self.scale, self.bias) }

    #[cfg(target_os = "emscripten")]
    fn get(&self, point: T) -> f64 { (self.source.get(point) * self.scale) + self.bias }
}
 */

/// Noise function that outputs Worley noise.
///
/// Copied from noise crate to make thread-safe.
#[derive(Clone)]
pub struct Worley {
    /// Specifies the distance function to use when calculating the boundaries
    /// of the cell.
    pub distance_function: Arc<DistanceFunction>,

    /// Signifies whether the distance from the borders of the cell should be
    /// returned, or the value for the cell.
    pub return_type: ReturnType,

    /// Frequency of the seed points.
    pub frequency: f64,

    seed: u32,
    perm_table: PermutationTable,
}

type DistanceFunction = dyn Fn(&[f64], &[f64]) -> f64 + Sync + Send;

impl Worley {
    //pub const DEFAULT_SEED: u32 = 0;
    pub const DEFAULT_FREQUENCY: f64 = 1.0;

    pub fn new(seed: u32) -> Self {
        Self {
            perm_table: PermutationTable::new(seed),
            seed,
            distance_function: Arc::new(distance_functions::euclidean),
            return_type: ReturnType::Value,
            frequency: Self::DEFAULT_FREQUENCY,
        }
    }

    /// Sets the distance function used by the Worley cells.
    pub fn set_distance_function<F>(self, function: F) -> Self
    where
        F: Fn(&[f64], &[f64]) -> f64 + 'static + Sync + Send,
    {
        Self {
            distance_function: Arc::new(function),
            ..self
        }
    }

    /// Enables or disables applying the distance from the nearest seed point
    /// to the output value.
    #[allow(dead_code)]
    pub fn set_return_type(self, return_type: ReturnType) -> Self {
        Self {
            return_type,
            ..self
        }
    }

    /// Sets the frequency of the seed points.
    pub fn set_frequency(self, frequency: f64) -> Self { Self { frequency, ..self } }
}

impl Default for Worley {
    fn default() -> Self { Self::new(0) }
}

impl Seedable for Worley {
    /// Sets the seed value used by the Worley cells.
    fn set_seed(self, seed: u32) -> Self {
        // If the new seed is the same as the current seed, just return self.
        if self.seed == seed {
            return self;
        }

        // Otherwise, regenerate the permutation table based on the new seed.
        Self {
            perm_table: PermutationTable::new(seed),
            seed,
            ..self
        }
    }

    fn seed(&self) -> u32 { self.seed }
}

impl NoiseFn<f64, 2> for Worley {
    fn get(&self, point: [f64; 2]) -> f64 {
        worley_2d(
            &self.perm_table,
            &*self.distance_function,
            self.return_type,
            Vector2::from(point) * self.frequency,
        )
    }
}

impl NoiseFn<f64, 3> for Worley {
    fn get(&self, point: [f64; 3]) -> f64 {
        worley_3d(
            &self.perm_table,
            &*self.distance_function,
            self.return_type,
            Vector3::from(point) * self.frequency,
        )
    }
}

#[allow(clippy::cognitive_complexity)]
impl NoiseFn<f64, 4> for Worley {
    fn get(&self, point: [f64; 4]) -> f64 {
        worley_4d(
            &self.perm_table,
            &*self.distance_function,
            self.return_type,
            Vector4::from(point) * self.frequency,
        )
    }
}