1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943
use bitvec::prelude::{bitbox, BitBox};
use common::{
terrain::{neighbors, uniform_idx_as_vec2, vec2_as_uniform_idx, MapSizeLg, TerrainChunkSize},
vol::RectVolSize,
};
use common_base::prof_span;
use noise::{
core::worley::*, math::vectors::*, permutationtable::PermutationTable, MultiFractal, NoiseFn,
Seedable,
};
use num::Float;
use rayon::prelude::*;
use std::sync::Arc;
use vek::*;
/// Calculates the smallest distance along an axis (x, y) from an edge of
/// the world. This value is maximal at map_size_lg.chunks() / 2 and
/// minimized at the
/// extremes (0 or map_size_lg.chunks() on one or more axes). It then divides
/// the quantity by cell_size, so the final result is 1 when we are not in a
/// cell along the edge of the world, and ranges between 0 and 1 otherwise
/// (lower when the chunk is closer to the edge).
pub fn map_edge_factor(map_size_lg: MapSizeLg, posi: usize) -> f32 {
uniform_idx_as_vec2(map_size_lg, posi)
.map2(map_size_lg.chunks().map(i32::from), |e, sz| {
(sz / 2 - (e - sz / 2).abs()) as f32 / (16.0 / 1024.0 * sz as f32)
})
.reduce_partial_min()
.clamp(0.0, 1.0)
}
/// Computes the cumulative distribution function of the weighted sum of k
/// independent, uniformly distributed random variables between 0 and 1. For
/// each variable i, we use `weights[i]` as the weight to give `samples[i]` (the
/// weights should all be positive).
///
/// If the precondition is met, the distribution of the result of calling this
/// function will be uniformly distributed while preserving the same information
/// that was in the original average.
///
/// For N > 33 the function will no longer return correct results since we will
/// overflow u32.
///
/// NOTE:
///
/// Per [[1]], the problem of determining the CDF of
/// the sum of uniformly distributed random variables over *different* ranges is
/// considerably more complicated than it is for the same-range case.
/// Fortunately, it also provides a reference to [2], which contains a complete
/// derivation of an exact rule for the density function for this case. The CDF
/// is just the integral of the cumulative distribution function [[3]],
/// which we use to convert this into a CDF formula.
///
/// This allows us to sum weighted, uniform, independent random variables.
///
/// At some point, we should probably contribute this back to stats-rs.
///
/// 1. [https://www.r-bloggers.com/sums-of-random-variables/][1],
/// 2. Sadooghi-Alvandi, S., A. Nematollahi, & R. Habibi, 2009. On the
/// Distribution of the Sum of Independent Uniform Random Variables.
/// Statistical Papers, 50, 171-175.
/// 3. [https://en.wikipedia.org/wiki/Cumulative_distribution_function][3]
///
/// [1]: https://www.r-bloggers.com/sums-of-random-variables/
/// [3]: https://en.wikipedia.org/wiki/Cumulative_distribution_function
pub fn cdf_irwin_hall<const N: usize>(weights: &[f32; N], samples: [f32; N]) -> f32 {
// Let J_k = {(j_1, ... , j_k) : 1 ≤ j_1 < j_2 < ··· < j_k ≤ N }.
//
// Let A_N = Π{k = 1 to n}a_k.
//
// The density function for N ≥ 2 is:
//
// 1/(A_N * (N - 1)!) * (x^(N-1) + Σ{k = 1 to N}((-1)^k *
// Σ{(j_1, ..., j_k) ∈ J_k}(max(0, x - Σ{l = 1 to k}(a_(j_l)))^(N - 1))))
//
// So the cumulative distribution function is its integral, i.e. (I think)
//
// 1/(product{k in A}(k) * N!) * (x^N + sum(k in 1 to N)((-1)^k *
// sum{j in Subsets[A, {k}]}(max(0, x - sum{l in j}(l))^N)))
//
// which is also equivalent to
//
// (letting B_k = { a in Subsets[A, {k}] : sum {l in a} l }, B_(0,1) = 0 and
// H_k = { i : 1 ≤ 1 ≤ N! / (k! * (N - k)!) })
//
// 1/(product{k in A}(k) * N!) * sum(k in 0 to N)((-1)^k *
// sum{l in H_k}(max(0, x - B_(k,l))^N))
//
// We should be able to iterate through the whole power set
// instead, and figure out K by calling count_ones(), so we can compute the
// result in O(2^N) iterations.
let x: f64 = weights
.iter()
.zip(samples.iter())
.map(|(&weight, &sample)| weight as f64 * sample as f64)
.sum();
let mut y = 0.0f64;
for subset in 0u32..(1 << N) {
// Number of set elements
let k = subset.count_ones();
// Add together exactly the set elements to get B_subset
let z = weights
.iter()
.enumerate()
.filter(|(i, _)| subset & (1 << i) as u32 != 0)
.map(|(_, &k)| k as f64)
.sum::<f64>();
// Compute max(0, x - B_subset)^N
let z = (x - z).max(0.0).powi(N as i32);
// The parity of k determines whether the sum is negated.
y += if k & 1 == 0 { z } else { -z };
}
// Divide by the product of the weights.
y /= weights.iter().map(|&k| k as f64).product::<f64>();
// Remember to multiply by 1 / N! at the end.
(y / (1..(N as i32) + 1).product::<i32>() as f64) as f32
}
/// First component of each element of the vector is the computed CDF of the
/// noise function at this index (i.e. its position in a sorted list of value
/// returned by the noise function applied to every chunk in the game). Second
/// component is the cached value of the noise function that generated the
/// index.
pub type InverseCdf<F = f32> = Box<[(f32, F)]>;
/// NOTE: First component is estimated horizon angles at each chunk; second
/// component is estimated heights of maximal occluder at each chunk (used
/// for making shadows volumetric).
pub type HorizonMap<A, H> = (Vec<A>, Vec<H>);
/// Compute inverse cumulative distribution function for arbitrary function f,
/// the hard way. We pre-generate noise values prior to worldgen, then sort
/// them in order to determine the correct position in the sorted order. That
/// lets us use `(index + 1) / (WORLDSIZE.y * WORLDSIZE.x)` as a uniformly
/// distributed (from almost-0 to 1) regularization of the chunks. That is, if
/// we apply the computed "function" F⁻¹(x, y) to (x, y) and get out p, it means
/// that approximately (100 * p)% of chunks have a lower value for F⁻¹ than p.
/// The main purpose of doing this is to make sure we are using the entire range
/// we want, and to allow us to apply the numerous results about distributions
/// on uniform functions to the procedural noise we generate, which lets us much
/// more reliably control the *number* of features in the world while still
/// letting us play with the *shape* of those features, without having arbitrary
/// cutoff points / discontinuities (which tend to produce ugly-looking /
/// unnatural terrain).
///
/// As a concrete example, before doing this it was very hard to tweak humidity
/// so that either most of the world wasn't dry, or most of it wasn't wet, by
/// combining the billow noise function and the computed altitude. This is
/// because the billow noise function has a very unusual distribution that is
/// heavily skewed towards 0. By correcting for this tendency, we can start
/// with uniformly distributed billow noise and altitudes and combine them to
/// get uniformly distributed humidity, while still preserving the existing
/// shapes that the billow noise and altitude functions produce.
///
/// f takes an index, which represents the index corresponding to this chunk in
/// any any SimChunk vector returned by uniform_noise, and (for convenience) the
/// float-translated version of those coordinates.
/// f should return a value with no NaNs. If there is a NaN, it will panic.
/// There are no other conditions on f. If f returns None, the value will be
/// set to NaN, and will be ignored for the purposes of computing the uniform
/// range.
///
/// Returns a vec of (f32, f32) pairs consisting of the percentage of chunks
/// with a value lower than this one, and the actual noise value (we don't need
/// to cache it, but it makes ensuring that subsequent code that needs the noise
/// value actually uses the same one we were using here easier). Also returns
/// the "inverted index" pointing from a position to a noise.
pub fn uniform_noise<F: Float + Send>(
map_size_lg: MapSizeLg,
f: impl Fn(usize, Vec2<f64>) -> Option<F> + Sync,
) -> (InverseCdf<F>, Box<[(usize, F)]>) {
let mut noise = (0..map_size_lg.chunks_len())
.into_par_iter()
.filter_map(|i| {
f(
i,
(uniform_idx_as_vec2(map_size_lg, i)
* TerrainChunkSize::RECT_SIZE.map(|e| e as i32))
.map(|e| e as f64),
)
.map(|res| (i, res))
})
.collect::<Vec<_>>();
// sort_unstable_by is equivalent to sort_by here since we include a unique
// index in the comparison. We could leave out the index, but this might
// make the order not reproduce the same way between different versions of
// Rust (for example).
noise.par_sort_unstable_by(|f, g| (f.1, f.0).partial_cmp(&(g.1, g.0)).unwrap());
// Construct a vector that associates each chunk position with the 1-indexed
// position of the noise in the sorted vector (divided by the vector length).
// This guarantees a uniform distribution among the samples (excluding those
// that returned None, which will remain at zero).
let mut uniform_noise = vec![(0.0, F::nan()); map_size_lg.chunks_len()].into_boxed_slice();
// NOTE: Consider using try_into here and elsewhere in this function, since
// i32::MAX technically doesn't fit in an f32 (even if we should never reach
// that limit).
let total = noise.len() as f32;
for (noise_idx, &(chunk_idx, noise_val)) in noise.iter().enumerate() {
uniform_noise[chunk_idx] = ((1 + noise_idx) as f32 / total, noise_val);
}
(uniform_noise, noise.into_boxed_slice())
}
/// Iterate through all cells adjacent and including four chunks whose top-left
/// point is posi. This isn't just the immediate neighbors of a chunk plus the
/// center, because it is designed to cover neighbors of a point in the chunk's
/// "interior."
///
/// This is what's used during cubic interpolation, for example, as it
/// guarantees that for any point between the given chunk (on the top left) and
/// its top-right/down-right/down neighbors, the twelve chunks surrounding this
/// box (its "perimeter") are also inspected.
pub fn local_cells(map_size_lg: MapSizeLg, posi: usize) -> impl Clone + Iterator<Item = usize> {
let pos = uniform_idx_as_vec2(map_size_lg, posi);
// NOTE: want to keep this such that the chunk index is in ascending order!
let grid_size = 3i32;
let grid_bounds = 2 * grid_size + 1;
(0..grid_bounds * grid_bounds)
.map(move |index| {
Vec2::new(
pos.x + (index % grid_bounds) - grid_size,
pos.y + (index / grid_bounds) - grid_size,
)
})
.filter(move |pos| {
pos.x >= 0
&& pos.y >= 0
&& pos.x < map_size_lg.chunks().x as i32
&& pos.y < map_size_lg.chunks().y as i32
})
.map(move |e| vec2_as_uniform_idx(map_size_lg, e))
}
// Note that we should already have okay cache locality since we have a grid.
pub fn uphill(
map_size_lg: MapSizeLg,
dh: &[isize],
posi: usize,
) -> impl Clone + Iterator<Item = usize> + '_ {
neighbors(map_size_lg, posi).filter(move |&posj| dh[posj] == posi as isize)
}
/// Compute the neighbor "most downhill" from all chunks.
///
/// TODO: See if allocating in advance is worthwhile.
pub fn downhill<F: Float>(
map_size_lg: MapSizeLg,
h: impl Fn(usize) -> F + Sync,
is_ocean: impl Fn(usize) -> bool + Sync,
) -> Box<[isize]> {
// Constructs not only the list of downhill nodes, but also computes an ordering
// (visiting nodes in order from roots to leaves).
(0..map_size_lg.chunks_len())
.into_par_iter()
.map(|posi| {
let nh = h(posi);
if is_ocean(posi) {
-2
} else {
let mut best = -1;
let mut besth = nh;
for nposi in neighbors(map_size_lg, posi) {
let nbh = h(nposi);
if nbh < besth {
besth = nbh;
best = nposi as isize;
}
}
best
}
})
.collect::<Vec<_>>()
.into_boxed_slice()
}
/* /// Bilinear interpolation.
///
/// Linear interpolation in both directions (i.e. quadratic interpolation).
fn get_interpolated_bilinear<T, F>(&self, pos: Vec2<i32>, mut f: F) -> Option<T>
where
T: Copy + Default + Signed + Float + Add<Output = T> + Mul<f32, Output = T>,
F: FnMut(Vec2<i32>) -> Option<T>,
{
// (i) Find downhill for all four points.
// (ii) Compute distance from each downhill point and do linear interpolation on
// their heights. (iii) Compute distance between each neighboring point
// and do linear interpolation on their distance-interpolated
// heights.
// See http://articles.adsabs.harvard.edu/cgi-bin/nph-iarticle_query?1990A%26A...239..443S&defaultprint=YES&page_ind=0&filetype=.pdf
//
// Note that these are only guaranteed monotone in one dimension; fortunately,
// that is sufficient for our purposes.
let pos = pos.map2(TerrainChunkSize::RECT_SIZE, |e, sz: u32| {
e as f64 / sz as f64
});
// Orient the chunk in the direction of the most downhill point of the four. If
// there is no "most downhill" point, then we don't care.
let x0 = pos.map2(Vec2::new(0, 0), |e, q| e.max(0.0) as i32 + q);
let y0 = f(x0)?;
let x1 = pos.map2(Vec2::new(1, 0), |e, q| e.max(0.0) as i32 + q);
let y1 = f(x1)?;
let x2 = pos.map2(Vec2::new(0, 1), |e, q| e.max(0.0) as i32 + q);
let y2 = f(x2)?;
let x3 = pos.map2(Vec2::new(1, 1), |e, q| e.max(0.0) as i32 + q);
let y3 = f(x3)?;
let z0 = y0
.mul(1.0 - pos.x.fract() as f32)
.mul(1.0 - pos.y.fract() as f32);
let z1 = y1.mul(pos.x.fract() as f32).mul(1.0 - pos.y.fract() as f32);
let z2 = y2.mul(1.0 - pos.x.fract() as f32).mul(pos.y.fract() as f32);
let z3 = y3.mul(pos.x.fract() as f32).mul(pos.y.fract() as f32);
Some(z0 + z1 + z2 + z3)
} */
/// Find all ocean tiles from a height map, using an inductive definition of
/// ocean as one of:
/// - posi is at the side of the world (map_edge_factor(posi) == 0.0)
/// - posi has a neighboring ocean tile, and has a height below sea level
/// (oldh(posi) <= 0.0).
pub fn get_oceans<F: Float>(map_size_lg: MapSizeLg, oldh: impl Fn(usize) -> F + Sync) -> BitBox {
// We can mark tiles as ocean candidates by scanning row by row, since the top
// edge is ocean, the sides are connected to it, and any subsequent ocean
// tiles must be connected to it.
let mut is_ocean = bitbox![0; map_size_lg.chunks_len()];
let mut stack = Vec::new();
let mut do_push = |pos| {
let posi = vec2_as_uniform_idx(map_size_lg, pos);
if oldh(posi) <= F::zero() {
stack.push(posi);
}
};
for x in 0..map_size_lg.chunks().x as i32 {
do_push(Vec2::new(x, 0));
do_push(Vec2::new(x, map_size_lg.chunks().y as i32 - 1));
}
for y in 1..map_size_lg.chunks().y as i32 - 1 {
do_push(Vec2::new(0, y));
do_push(Vec2::new(map_size_lg.chunks().x as i32 - 1, y));
}
while let Some(chunk_idx) = stack.pop() {
// println!("Ocean chunk {:?}: {:?}", uniform_idx_as_vec2(map_size_lg,
// chunk_idx), oldh(chunk_idx));
let mut is_ocean = is_ocean.get_mut(chunk_idx).unwrap();
if *is_ocean {
continue;
}
*is_ocean = true;
stack.extend(neighbors(map_size_lg, chunk_idx).filter(|&neighbor_idx| {
// println!("Ocean neighbor: {:?}: {:?}", uniform_idx_as_vec2(map_size_lg,
// neighbor_idx), oldh(neighbor_idx));
oldh(neighbor_idx) <= F::zero()
}));
}
is_ocean
}
/// Finds the horizon map for sunlight for the given chunks.
#[allow(clippy::result_unit_err)]
pub fn get_horizon_map<F: Float + Sync, A: Send, H: Send>(
map_size_lg: MapSizeLg,
bounds: Aabr<i32>,
minh: F,
maxh: F,
h: impl Fn(usize) -> F + Sync,
to_angle: impl Fn(F) -> A + Sync,
to_height: impl Fn(F) -> H + Sync,
) -> Result<[HorizonMap<A, H>; 2], ()> {
prof_span!("get_horizon_map");
if maxh < minh {
// maxh must be greater than minh
return Err(());
}
let map_size = Vec2::<i32>::from(bounds.size()).map(|e| e as usize);
let map_len = map_size.product();
// Now, do the raymarching.
let chunk_x = if let Vec2 { x: Some(x), .. } = TerrainChunkSize::RECT_SIZE.map(F::from) {
x
} else {
return Err(());
};
// let epsilon = F::epsilon() * if let x = F::from(map_size.x) { x } else {
// return Err(()) };
let march = |dx: isize, maxdx: fn(isize, map_size_lg: MapSizeLg) -> isize| {
let mut angles = Vec::with_capacity(map_len);
let mut heights = Vec::with_capacity(map_len);
(0..map_len)
.into_par_iter()
.map(|posi| {
let wposi =
bounds.min + Vec2::new((posi % map_size.x) as i32, (posi / map_size.x) as i32);
if wposi.reduce_partial_min() < 0
|| wposi.x as usize >= usize::from(map_size_lg.chunks().x)
|| wposi.y as usize >= usize::from(map_size_lg.chunks().y)
{
return (to_angle(F::zero()), to_height(F::zero()));
}
let posi = vec2_as_uniform_idx(map_size_lg, wposi);
// March in the given direction.
let maxdx = maxdx(wposi.x as isize, map_size_lg);
let mut slope = F::zero();
let h0 = h(posi);
let h = if h0 < minh {
F::zero()
} else {
let mut max_height = F::zero();
let maxdz = maxh - h0;
let posi = posi as isize;
for deltax in 1..maxdx {
let posj = (posi + deltax * dx) as usize;
let deltax = chunk_x * F::from(deltax).unwrap();
let h_j_est = slope * deltax;
if h_j_est > maxdz {
break;
}
let h_j_act = h(posj) - h0;
if
/* h_j_est - h_j_act <= epsilon */
h_j_est <= h_j_act {
slope = h_j_act / deltax;
max_height = h_j_act;
}
}
h0 - minh + max_height
};
let a = slope;
(to_angle(a), to_height(h))
})
.unzip_into_vecs(&mut angles, &mut heights);
(angles, heights)
};
let west = march(-1, |x, _| x);
let east = march(1, |x, map_size_lg| {
(usize::from(map_size_lg.chunks().x) - x as usize) as isize
});
Ok([west, east])
}
fn build_sources<Source>(seed: u32, octaves: usize) -> Vec<Source>
where
Source: Default + Seedable,
{
let mut sources = Vec::with_capacity(octaves);
for x in 0..octaves {
let source = Source::default();
sources.push(source.set_seed(seed + x as u32));
}
sources
}
/// Noise function that outputs hybrid Multifractal noise.
///
/// The result of this multifractal noise is that valleys in the noise should
/// have smooth bottoms at all altitudes.
///
/// Copied from noise crate to add offset.
#[derive(Clone, Debug)]
pub struct HybridMulti<T> {
/// Total number of frequency octaves to generate the noise with.
///
/// The number of octaves control the _amount of detail_ in the noise
/// function. Adding more octaves increases the detail, with the drawback
/// of increasing the calculation time.
pub octaves: usize,
/// The number of cycles per unit length that the noise function outputs.
pub frequency: f64,
/// A multiplier that determines how quickly the frequency increases for
/// each successive octave in the noise function.
///
/// The frequency of each successive octave is equal to the product of the
/// previous octave's frequency and the lacunarity value.
///
/// A lacunarity of 2.0 results in the frequency doubling every octave. For
/// almost all cases, 2.0 is a good value to use.
pub lacunarity: f64,
/// A multiplier that determines how quickly the amplitudes diminish for
/// each successive octave in the noise function.
///
/// The amplitude of each successive octave is equal to the product of the
/// previous octave's amplitude and the persistence value. Increasing the
/// persistence produces "rougher" noise.
///
/// H = 1.0 - fractal increment = -ln(persistence) / ln(lacunarity). For
/// a fractal increment between 0 (inclusive) and 1 (exclusive), keep
/// persistence between 1 / lacunarity (inclusive, for low fractal
/// dimension) and 1 (exclusive, for high fractal dimension).
pub persistence: f64,
/// An offset that is added to the output of each sample of the underlying
/// Perlin noise function. Because each successive octave is weighted in
/// part by the previous signal's output, increasing the offset will weight
/// the output more heavily towards 1.0.
pub offset: f64,
seed: u32,
sources: Vec<T>,
//scale_factor: f64,
}
impl<T> HybridMulti<T>
where
T: Default + Seedable,
{
pub const DEFAULT_FREQUENCY: f64 = 2.0;
pub const DEFAULT_LACUNARITY: f64 = /* std::f64::consts::PI * 2.0 / 3.0 */ 2.0;
pub const DEFAULT_OCTAVES: usize = 6;
pub const DEFAULT_OFFSET: f64 = /* 0.25 *//* 0.5 */ 0.7;
// -ln(2^(-0.25))/ln(2) = 0.25
// 2^(-0.25) ~ 13/16
pub const DEFAULT_PERSISTENCE: f64 = /* 0.25 *//* 0.5 */ 13.0 / 16.0;
pub const DEFAULT_SEED: u32 = 0;
pub const MAX_OCTAVES: usize = 32;
pub fn new(seed: u32) -> Self {
Self {
seed,
octaves: Self::DEFAULT_OCTAVES,
frequency: Self::DEFAULT_FREQUENCY,
lacunarity: Self::DEFAULT_LACUNARITY,
persistence: Self::DEFAULT_PERSISTENCE,
offset: Self::DEFAULT_OFFSET,
sources: build_sources(seed, Self::DEFAULT_OCTAVES),
//scale_factor: Self::calc_scale_factor(Self::DEFAULT_PERSISTENCE,
// Self::DEFAULT_OCTAVES),
}
}
pub fn set_offset(self, offset: f64) -> Self { Self { offset, ..self } }
#[allow(dead_code)]
pub fn set_sources(self, sources: Vec<T>) -> Self { Self { sources, ..self } }
/*fn calc_scale_factor(persistence: f64, octaves: usize) -> f64 {
let mut result = persistence;
// Do octave 0
let mut amplitude = persistence;
let mut weight = result;
let mut signal = amplitude;
weight *= signal;
result += signal;
if octaves >= 1 {
result += (1..=octaves).fold(0.0, |acc, _| {
amplitude *= persistence;
weight = weight.max(1.0);
signal = amplitude;
weight *= signal;
acc + signal
});
}
2.0 / result
}*/
}
impl<T> Default for HybridMulti<T>
where
T: Default + Seedable,
{
fn default() -> Self { Self::new(Self::DEFAULT_SEED) }
}
impl<T> MultiFractal for HybridMulti<T>
where
T: Default + Seedable,
{
fn set_octaves(self, mut octaves: usize) -> Self {
if self.octaves == octaves {
return self;
}
octaves = octaves.clamp(1, Self::MAX_OCTAVES);
Self {
octaves,
sources: build_sources(self.seed, octaves),
//scale_factor: Self::calc_scale_factor(self.persistence, octaves),
..self
}
}
fn set_frequency(self, frequency: f64) -> Self { Self { frequency, ..self } }
fn set_lacunarity(self, lacunarity: f64) -> Self { Self { lacunarity, ..self } }
fn set_persistence(self, persistence: f64) -> Self {
Self {
persistence,
//scale_factor: Self::calc_scale_factor(persistence, self.octaves),
..self
}
}
}
impl<T> Seedable for HybridMulti<T>
where
T: Default + Seedable,
{
fn set_seed(self, seed: u32) -> Self {
if self.seed == seed {
return self;
}
Self {
seed,
sources: build_sources(seed, self.octaves),
..self
}
}
fn seed(&self) -> u32 { self.seed }
}
/// 2-dimensional `HybridMulti` noise
impl<T> NoiseFn<f64, 2> for HybridMulti<T>
where
T: NoiseFn<f64, 2>,
{
fn get(&self, point: [f64; 2]) -> f64 {
let mut point = Vector2::from(point);
let mut attenuation = self.persistence;
// First unscaled octave of function; later octaves are scaled.
point *= self.frequency;
// Offset and bias to scale into [offset - 1.0, 1.0 + offset] range.
let bias = 1.0;
let mut result =
(self.sources[0].get(point.into_array()) + self.offset) * bias * self.persistence;
let mut scale = self.persistence;
let mut weight = result;
// Spectral construction inner loop, where the fractal is built.
for x in 1..self.octaves {
// Prevent divergence.
weight = weight.min(1.0);
// Raise the spatial frequency.
point *= self.lacunarity;
// Get noise value, and scale it to the [offset - 1.0, 1.0 + offset] range.
let mut signal = (self.sources[x].get(point.into_array()) + self.offset) * bias;
// Scale the amplitude appropriately for this frequency.
signal *= attenuation;
scale += attenuation;
// Increase the attenuation for the next octave, to be equal to persistence ^ (x
// + 1)
attenuation *= self.persistence;
// Add it in, weighted by previous octave's noise value.
result += weight * signal;
// Update the weighting value.
weight *= signal;
}
// Scale the result to the [-1,1] range
//result * self.scale_factor
(result / scale) / bias - self.offset
}
}
/// 3-dimensional `HybridMulti` noise
impl<T> NoiseFn<f64, 3> for HybridMulti<T>
where
T: NoiseFn<f64, 3>,
{
fn get(&self, point: [f64; 3]) -> f64 {
let mut point = Vector3::from(point);
let mut attenuation = self.persistence;
// First unscaled octave of function; later octaves are scaled.
point *= self.frequency;
// Offset and bias to scale into [offset - 1.0, 1.0 + offset] range.
let bias = 1.0;
let mut result =
(self.sources[0].get(point.into_array()) + self.offset) * bias * self.persistence;
let mut scale = self.persistence;
let mut weight = result;
// Spectral construction inner loop, where the fractal is built.
for x in 1..self.octaves {
// Prevent divergence.
weight = weight.min(1.0);
// Raise the spatial frequency.
point *= self.lacunarity;
// Get noise value, and scale it to the [0, 1.0] range.
let mut signal = (self.sources[x].get(point.into_array()) + self.offset) * bias;
// Scale the amplitude appropriately for this frequency.
signal *= attenuation;
scale += attenuation;
// Increase the attenuation for the next octave, to be equal to persistence ^ (x
// + 1)
attenuation *= self.persistence;
// Add it in, weighted by previous octave's noise value.
result += weight * signal;
// Update the weighting value.
weight *= signal;
}
// Scale the result to the [-1,1] range
//result * self.scale_factor
(result / scale) / bias - self.offset
}
}
/// 4-dimensional `HybridMulti` noise
impl<T> NoiseFn<f64, 4> for HybridMulti<T>
where
T: NoiseFn<f64, 4>,
{
fn get(&self, point: [f64; 4]) -> f64 {
let mut point = Vector4::from(point);
let mut attenuation = self.persistence;
// First unscaled octave of function; later octaves are scaled.
point *= self.frequency;
// Offset and bias to scale into [offset - 1.0, 1.0 + offset] range.
let bias = 1.0;
let mut result =
(self.sources[0].get(point.into_array()) + self.offset) * bias * self.persistence;
let mut scale = self.persistence;
let mut weight = result;
// Spectral construction inner loop, where the fractal is built.
for x in 1..self.octaves {
// Prevent divergence.
weight = weight.min(1.0);
// Raise the spatial frequency.
point *= self.lacunarity;
// Get noise value, and scale it to the [0, 1.0] range.
let mut signal = (self.sources[x].get(point.into_array()) + self.offset) * bias;
// Scale the amplitude appropriately for this frequency.
signal *= attenuation;
scale += attenuation;
// Increase the attenuation for the next octave, to be equal to persistence ^ (x
// + 1)
attenuation *= self.persistence;
// Add it in, weighted by previous octave's noise value.
result += weight * signal;
// Update the weighting value.
weight *= signal;
}
// Scale the result to the [-1,1] range
//result * self.scale_factor
(result / scale) / bias - self.offset
}
}
/* code used by sharp in future – note: NoiseFn impl probably broken by noise crate upgrade from 0.7 to 0.9
/// Noise function that applies a scaling factor and a bias to the output value
/// from the source function.
///
/// The function retrieves the output value from the source function, multiplies
/// it with the scaling factor, adds the bias to it, then outputs the value.
pub struct ScaleBias<'a, F: 'a> {
/// Outputs a value.
pub source: &'a F,
/// Scaling factor to apply to the output value from the source function.
/// The default value is 1.0.
pub scale: f64,
/// Bias to apply to the scaled output value from the source function.
/// The default value is 0.0.
pub bias: f64,
}
impl<'a, F> ScaleBias<'a, F> {
pub fn new(source: &'a F) -> Self {
ScaleBias {
source,
scale: 1.0,
bias: 0.0,
}
}
pub fn set_scale(self, scale: f64) -> Self { ScaleBias { scale, ..self } }
pub fn set_bias(self, bias: f64) -> Self { ScaleBias { bias, ..self } }
}
impl<'a, F: NoiseFn<T> + 'a, T> NoiseFn<T> for ScaleBias<'a, F> {
#[cfg(not(target_os = "emscripten"))]
fn get(&self, point: T) -> f64 { (self.source.get(point)).mul_add(self.scale, self.bias) }
#[cfg(target_os = "emscripten")]
fn get(&self, point: T) -> f64 { (self.source.get(point) * self.scale) + self.bias }
}
*/
/// Noise function that outputs Worley noise.
///
/// Copied from noise crate to make thread-safe.
#[derive(Clone)]
pub struct Worley {
/// Specifies the distance function to use when calculating the boundaries
/// of the cell.
pub distance_function: Arc<DistanceFunction>,
/// Signifies whether the distance from the borders of the cell should be
/// returned, or the value for the cell.
pub return_type: ReturnType,
/// Frequency of the seed points.
pub frequency: f64,
seed: u32,
perm_table: PermutationTable,
}
type DistanceFunction = dyn Fn(&[f64], &[f64]) -> f64 + Sync + Send;
impl Worley {
//pub const DEFAULT_SEED: u32 = 0;
pub const DEFAULT_FREQUENCY: f64 = 1.0;
pub fn new(seed: u32) -> Self {
Self {
perm_table: PermutationTable::new(seed),
seed,
distance_function: Arc::new(distance_functions::euclidean),
return_type: ReturnType::Value,
frequency: Self::DEFAULT_FREQUENCY,
}
}
/// Sets the distance function used by the Worley cells.
pub fn set_distance_function<F>(self, function: F) -> Self
where
F: Fn(&[f64], &[f64]) -> f64 + 'static + Sync + Send,
{
Self {
distance_function: Arc::new(function),
..self
}
}
/// Enables or disables applying the distance from the nearest seed point
/// to the output value.
#[allow(dead_code)]
pub fn set_return_type(self, return_type: ReturnType) -> Self {
Self {
return_type,
..self
}
}
/// Sets the frequency of the seed points.
pub fn set_frequency(self, frequency: f64) -> Self { Self { frequency, ..self } }
}
impl Default for Worley {
fn default() -> Self { Self::new(0) }
}
impl Seedable for Worley {
/// Sets the seed value used by the Worley cells.
fn set_seed(self, seed: u32) -> Self {
// If the new seed is the same as the current seed, just return self.
if self.seed == seed {
return self;
}
// Otherwise, regenerate the permutation table based on the new seed.
Self {
perm_table: PermutationTable::new(seed),
seed,
..self
}
}
fn seed(&self) -> u32 { self.seed }
}
impl NoiseFn<f64, 2> for Worley {
fn get(&self, point: [f64; 2]) -> f64 {
worley_2d(
&self.perm_table,
&*self.distance_function,
self.return_type,
Vector2::from(point) * self.frequency,
)
}
}
impl NoiseFn<f64, 3> for Worley {
fn get(&self, point: [f64; 3]) -> f64 {
worley_3d(
&self.perm_table,
&*self.distance_function,
self.return_type,
Vector3::from(point) * self.frequency,
)
}
}
#[allow(clippy::cognitive_complexity)]
impl NoiseFn<f64, 4> for Worley {
fn get(&self, point: [f64; 4]) -> f64 {
worley_4d(
&self.perm_table,
&*self.distance_function,
self.return_type,
Vector4::from(point) * self.frequency,
)
}
}