Struct veloren_network::channel::MPSC_POOL

source ·
pub(crate) struct MPSC_POOL {
    __private_field: (),
}

Fields§

§__private_field: ()

Methods from Deref<Target = Mutex<HashMap<u64, UnboundedSender<(Sender<MpscMsg>, Sender<Sender<MpscMsg>>)>>>>§

pub async fn lock(&self) -> MutexGuard<'_, T>

Locks this mutex, causing the current task to yield until the lock has been acquired. When the lock has been acquired, function returns a [MutexGuard].

If the mutex is available to be acquired immediately, then this call will typically not yield to the runtime. However, this is not guaranteed under all circumstances.

§Cancel safety

This method uses a queue to fairly distribute locks in the order they were requested. Cancelling a call to lock makes you lose your place in the queue.

§Examples
use tokio::sync::Mutex;

#[tokio::main]
async fn main() {
    let mutex = Mutex::new(1);

    let mut n = mutex.lock().await;
    *n = 2;
}

pub fn blocking_lock(&self) -> MutexGuard<'_, T>

Blockingly locks this Mutex. When the lock has been acquired, function returns a [MutexGuard].

This method is intended for use cases where you need to use this mutex in asynchronous code as well as in synchronous code.

§Panics

This function panics if called within an asynchronous execution context.

  • If you find yourself in an asynchronous execution context and needing to call some (synchronous) function which performs one of these blocking_ operations, then consider wrapping that call inside [spawn_blocking()][crate::runtime::Handle::spawn_blocking] (or [block_in_place()][crate::task::block_in_place]).
§Examples
use std::sync::Arc;
use tokio::sync::Mutex;

#[tokio::main]
async fn main() {
    let mutex =  Arc::new(Mutex::new(1));
    let lock = mutex.lock().await;

    let mutex1 = Arc::clone(&mutex);
    let blocking_task = tokio::task::spawn_blocking(move || {
        // This shall block until the `lock` is released.
        let mut n = mutex1.blocking_lock();
        *n = 2;
    });

    assert_eq!(*lock, 1);
    // Release the lock.
    drop(lock);

    // Await the completion of the blocking task.
    blocking_task.await.unwrap();

    // Assert uncontended.
    let n = mutex.try_lock().unwrap();
    assert_eq!(*n, 2);
}

pub fn blocking_lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>

Blockingly locks this Mutex. When the lock has been acquired, function returns an [OwnedMutexGuard].

This method is identical to [Mutex::blocking_lock], except that the returned guard references the Mutex with an Arc rather than by borrowing it. Therefore, the Mutex must be wrapped in an Arc to call this method, and the guard will live for the 'static lifetime, as it keeps the Mutex alive by holding an Arc.

§Panics

This function panics if called within an asynchronous execution context.

  • If you find yourself in an asynchronous execution context and needing to call some (synchronous) function which performs one of these blocking_ operations, then consider wrapping that call inside [spawn_blocking()][crate::runtime::Handle::spawn_blocking] (or [block_in_place()][crate::task::block_in_place]).
§Examples
use std::sync::Arc;
use tokio::sync::Mutex;

#[tokio::main]
async fn main() {
    let mutex =  Arc::new(Mutex::new(1));
    let lock = mutex.lock().await;

    let mutex1 = Arc::clone(&mutex);
    let blocking_task = tokio::task::spawn_blocking(move || {
        // This shall block until the `lock` is released.
        let mut n = mutex1.blocking_lock_owned();
        *n = 2;
    });

    assert_eq!(*lock, 1);
    // Release the lock.
    drop(lock);

    // Await the completion of the blocking task.
    blocking_task.await.unwrap();

    // Assert uncontended.
    let n = mutex.try_lock().unwrap();
    assert_eq!(*n, 2);
}

pub async fn lock_owned(self: Arc<Mutex<T>>) -> OwnedMutexGuard<T>

Locks this mutex, causing the current task to yield until the lock has been acquired. When the lock has been acquired, this returns an [OwnedMutexGuard].

If the mutex is available to be acquired immediately, then this call will typically not yield to the runtime. However, this is not guaranteed under all circumstances.

This method is identical to [Mutex::lock], except that the returned guard references the Mutex with an Arc rather than by borrowing it. Therefore, the Mutex must be wrapped in an Arc to call this method, and the guard will live for the 'static lifetime, as it keeps the Mutex alive by holding an Arc.

§Cancel safety

This method uses a queue to fairly distribute locks in the order they were requested. Cancelling a call to lock_owned makes you lose your place in the queue.

§Examples
use tokio::sync::Mutex;
use std::sync::Arc;

#[tokio::main]
async fn main() {
    let mutex = Arc::new(Mutex::new(1));

    let mut n = mutex.clone().lock_owned().await;
    *n = 2;
}

pub fn try_lock(&self) -> Result<MutexGuard<'_, T>, TryLockError>

Attempts to acquire the lock, and returns TryLockError if the lock is currently held somewhere else.

§Examples
use tokio::sync::Mutex;

let mutex = Mutex::new(1);

let n = mutex.try_lock()?;
assert_eq!(*n, 1);

pub fn try_lock_owned( self: Arc<Mutex<T>>, ) -> Result<OwnedMutexGuard<T>, TryLockError>

Attempts to acquire the lock, and returns TryLockError if the lock is currently held somewhere else.

This method is identical to [Mutex::try_lock], except that the returned guard references the Mutex with an Arc rather than by borrowing it. Therefore, the Mutex must be wrapped in an Arc to call this method, and the guard will live for the 'static lifetime, as it keeps the Mutex alive by holding an Arc.

§Examples
use tokio::sync::Mutex;
use std::sync::Arc;

let mutex = Arc::new(Mutex::new(1));

let n = mutex.clone().try_lock_owned()?;
assert_eq!(*n, 1);

Trait Implementations§

source§

impl Deref for MPSC_POOL

§

type Target = Mutex<HashMap<u64, UnboundedSender<(Sender<MpscMsg>, Sender<Sender<MpscMsg>>)>>>

The resulting type after dereferencing.
source§

fn deref( &self, ) -> &Mutex<HashMap<u64, UnboundedSender<(Sender<MpscMsg>, Sender<Sender<MpscMsg>>)>>>

Dereferences the value.
source§

impl LazyStatic for MPSC_POOL

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<T> IntoEither for T

source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more