pub struct Banlist(pub(super) HashMap<Uuid, BanEntry>);

Tuple Fields§

§0: HashMap<Uuid, BanEntry>

Implementations§

source§

impl Banlist

source

pub fn ban_action( &mut self, data_dir: &Path, now: DateTime<Utc>, uuid: Uuid, username_when_performed: String, action: BanAction, overwrite: bool ) -> Option<Result<(), Error<Banlist>>>

Attempt to perform the ban action action for the user with UUID uuid and username username, starting from time now (the information about the banning party will be in the action record), with a settings file maintained at path root data_dir.

If trying to unban an already unbanned player, or trying to ban but the ban status would not immediately change, the “overwrite” boolean should also be set to true.

We try to detect duplicates (bans that would have no effect) and return None if such effects are encountered. Otherwise, we return Some(result), which works as follows.

If the ban was invalid for any reason, then neither the in-memory banlist nor the on-disk banlist are modified. If the ban entry is valid but the file encounters an error that prevents it from being atomically written to disk, we return an error but retain the change in memory. Otherwise, we complete successfully and atomically write the banlist to disk.

Note that the IO operation is only guaranteed atomic in the weak sense that either the whole page is written or it isn’t; we cannot guarantee that the data we read in order to modify the file was definitely up to date, so we could be missing information if the file was manually edited or a function edits it without going through the usual specs resources. So, please be careful with ad hoc modifications to the file while the server is running.

Panics if provided a ban action with info set to None, as info: None should only be used for legacy records.

TODO: Consider creating a new type specifically for the entry to avoid needing the precondition on info.

source§

impl Banlist

source

pub(super) fn migrate(prev: Banlist) -> Self

One-off migration from the previous version. This must be guaranteed to produce a valid settings file as long as it is called with a valid settings file from the previous version.

source

pub(super) fn validate( &mut self ) -> Result<Version, <Banlist as EditableSetting>::Error>

Perform any needed validation on this banlist that can’t be done using parsing.

The returned version being “Old” indicates the loaded setting has been modified during validation (this is why validate takes &mut self).

Methods from Deref<Target = HashMap<Uuid, BanEntry>>§

pub fn par_keys(&self) -> ParKeys<'_, K, V>

Visits (potentially in parallel) immutably borrowed keys in an arbitrary order.

pub fn par_values(&self) -> ParValues<'_, K, V>

Visits (potentially in parallel) immutably borrowed values in an arbitrary order.

pub fn par_eq(&self, other: &HashMap<K, V, S, A>) -> bool

Returns true if the map is equal to another, i.e. both maps contain the same keys mapped to the same values.

This method runs in a potentially parallel fashion.

pub fn allocator(&self) -> &A

Returns a reference to the underlying allocator.

pub fn hasher(&self) -> &S

Returns a reference to the map’s BuildHasher.

Examples
use hashbrown::HashMap;
use hashbrown::hash_map::DefaultHashBuilder;

let hasher = DefaultHashBuilder::default();
let map: HashMap<i32, i32> = HashMap::with_hasher(hasher);
let hasher: &DefaultHashBuilder = map.hasher();

pub fn capacity(&self) -> usize

Returns the number of elements the map can hold without reallocating.

This number is a lower bound; the HashMap<K, V> might be able to hold more, but is guaranteed to be able to hold at least this many.

Examples
use hashbrown::HashMap;
let map: HashMap<i32, i32> = HashMap::with_capacity(100);
assert_eq!(map.len(), 0);
assert!(map.capacity() >= 100);

pub fn keys(&self) -> Keys<'_, K, V>

An iterator visiting all keys in arbitrary order. The iterator element type is &'a K.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<&str> = Vec::new();

for key in map.keys() {
    println!("{}", key);
    vec.push(*key);
}

// The `Keys` iterator produces keys in arbitrary order, so the
// keys must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, ["a", "b", "c"]);

assert_eq!(map.len(), 3);

pub fn values(&self) -> Values<'_, K, V>

An iterator visiting all values in arbitrary order. The iterator element type is &'a V.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<i32> = Vec::new();

for val in map.values() {
    println!("{}", val);
    vec.push(*val);
}

// The `Values` iterator produces values in arbitrary order, so the
// values must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [1, 2, 3]);

assert_eq!(map.len(), 3);

pub fn iter(&self) -> Iter<'_, K, V>

An iterator visiting all key-value pairs in arbitrary order. The iterator element type is (&'a K, &'a V).

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert("a", 1);
map.insert("b", 2);
map.insert("c", 3);
assert_eq!(map.len(), 3);
let mut vec: Vec<(&str, i32)> = Vec::new();

for (key, val) in map.iter() {
    println!("key: {} val: {}", key, val);
    vec.push((*key, *val));
}

// The `Iter` iterator produces items in arbitrary order, so the
// items must be sorted to test them against a sorted array.
vec.sort_unstable();
assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]);

assert_eq!(map.len(), 3);

pub fn len(&self) -> usize

Returns the number of elements in the map.

Examples
use hashbrown::HashMap;

let mut a = HashMap::new();
assert_eq!(a.len(), 0);
a.insert(1, "a");
assert_eq!(a.len(), 1);

pub fn is_empty(&self) -> bool

Returns true if the map contains no elements.

Examples
use hashbrown::HashMap;

let mut a = HashMap::new();
assert!(a.is_empty());
a.insert(1, "a");
assert!(!a.is_empty());

pub fn get<Q>(&self, k: &Q) -> Option<&V>
where Q: Hash + Equivalent<K> + ?Sized,

Returns a reference to the value corresponding to the key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get(&1), Some(&"a"));
assert_eq!(map.get(&2), None);

pub fn get_key_value<Q>(&self, k: &Q) -> Option<(&K, &V)>
where Q: Hash + Equivalent<K> + ?Sized,

Returns the key-value pair corresponding to the supplied key.

The supplied key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.get_key_value(&1), Some((&1, &"a")));
assert_eq!(map.get_key_value(&2), None);

pub fn contains_key<Q>(&self, k: &Q) -> bool
where Q: Hash + Equivalent<K> + ?Sized,

Returns true if the map contains a value for the specified key.

The key may be any borrowed form of the map’s key type, but Hash and Eq on the borrowed form must match those for the key type.

Examples
use hashbrown::HashMap;

let mut map = HashMap::new();
map.insert(1, "a");
assert_eq!(map.contains_key(&1), true);
assert_eq!(map.contains_key(&2), false);

pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A>

Creates a raw immutable entry builder for the HashMap.

Raw entries provide the lowest level of control for searching and manipulating a map. They must be manually initialized with a hash and then manually searched.

This is useful for

  • Hash memoization
  • Using a search key that doesn’t work with the Borrow trait
  • Using custom comparison logic without newtype wrappers

Unless you are in such a situation, higher-level and more foolproof APIs like get should be preferred.

Immutable raw entries have very limited use; you might instead want raw_entry_mut.

Examples
use core::hash::{BuildHasher, Hash};
use hashbrown::HashMap;

let mut map = HashMap::new();
map.extend([("a", 100), ("b", 200), ("c", 300)]);

fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 {
    use core::hash::Hasher;
    let mut state = hash_builder.build_hasher();
    key.hash(&mut state);
    state.finish()
}

for k in ["a", "b", "c", "d", "e", "f"] {
    let hash = compute_hash(map.hasher(), k);
    let v = map.get(&k).cloned();
    let kv = v.as_ref().map(|v| (&k, v));

    println!("Key: {} and value: {:?}", k, v);

    assert_eq!(map.raw_entry().from_key(&k), kv);
    assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv);
    assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv);
}

Trait Implementations§

source§

impl Clone for Banlist

source§

fn clone(&self) -> Banlist

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Default for Banlist

source§

fn default() -> Banlist

Returns the “default value” for a type. Read more
source§

impl<'de> Deserialize<'de> for Banlist

source§

fn deserialize<__D>(__deserializer: __D) -> Result<Self, __D::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
source§

impl EditableSetting for Banlist

§

type Error = BanError

Please use this error sparingly, since we ideally want to preserve forwards compatibility for all migrations. In particular, this error should be used to fail validation of the original settings file that cannot be caught with ordinary parsing, rather than used to signal errors that occurred during migrations. Read more
§

type Legacy = Banlist

Into is expected to migrate directly to the latest version, which can be implemented using “chaining”. The use of Into here rather than TryInto is intended (together with the expected use of chaining) to prevent migrations from invalidating old save files without warning; there should always be a non-failing migration path from the oldest to latest format (if the migration path fails, we can panic).
§

type Setting = BanlistRaw

TryInto<(Version, Self)> is expected to migrate to the latest version from any older version, using “chaining” (see super::banlist for examples). Read more
source§

const FILENAME: &'static str = FILENAME

source§

fn load(data_dir: &Path) -> Self

source§

fn edit<R>( &mut self, data_dir: &Path, f: impl FnOnce(&mut Self) -> Option<R> ) -> Option<(R, Result<(), Error<Self>>)>

If the result of calling f is None,we return None (this constitutes an early return and lets us abandon the in-progress edit). For example, this can be used to avoid adding a new ban entry if someone is already banned and the user didn’t explicitly specify that they wanted to add a new ban record, even though it would be completely valid to attach one. Read more
source§

fn get_path(data_dir: &Path) -> PathBuf

source§

impl From<Banlist> for Banlist

source§

fn from(value: Banlist) -> Self

Legacy migrations can be migrated to the latest version through the process of “chaining” migrations, starting from next::Banlist.

Note that legacy files are always valid, which is why we implement From rather than TryFrom.

source§

impl From<Banlist> for BanlistRaw

source§

fn from(value: Banlist) -> Self

Converts to this type from the input type.
source§

impl Serialize for Banlist

source§

fn serialize<__S>(&self, __serializer: __S) -> Result<__S::Ok, __S::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
source§

impl TryFrom<Banlist> for Banlist

Pretty much every TryFrom implementation except that of the very last version should look exactly like this.

§

type Error = <Banlist as EditableSetting>::Error

The type returned in the event of a conversion error.
source§

fn try_from(value: Banlist) -> Result<Banlist, Self::Error>

Performs the conversion.
source§

impl Deref for Banlist

§

type Target = HashMap<Uuid, BanEntry>

The resulting type after dereferencing.
source§

fn deref(&self) -> &Self::Target

Dereferences the value.

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T, U> Cast<U> for T
where U: FromCast<T>,

§

fn cast(self) -> U

Numeric cast from self to T.
§

impl<T> Conv for T

§

fn conv<T>(self) -> T
where Self: Into<T>,

Converts self into T using Into<T>. Read more
§

impl<C, M> ConvertSaveload<M> for C

§

type Data = C

(De)Serializable data representation for data type
§

type Error = Infallible

Error may occur during serialization or deserialization of component
§

fn convert_into<F>( &self, _: F ) -> Result<<C as ConvertSaveload<M>>::Data, <C as ConvertSaveload<M>>::Error>
where F: FnMut(Entity) -> Option<M>,

Convert this data type into serializable form (Data) using entity to marker mapping function
§

fn convert_from<F>( data: <C as ConvertSaveload<M>>::Data, _: F ) -> Result<C, <C as ConvertSaveload<M>>::Error>
where F: FnMut(M) -> Option<Entity>,

Convert this data from a deserializable form (Data) using entity to marker mapping function
§

impl<T> FmtForward for T

§

fn fmt_binary(self) -> FmtBinary<Self>
where Self: Binary,

Causes self to use its Binary implementation when Debug-formatted.
§

fn fmt_display(self) -> FmtDisplay<Self>
where Self: Display,

Causes self to use its Display implementation when Debug-formatted.
§

fn fmt_lower_exp(self) -> FmtLowerExp<Self>
where Self: LowerExp,

Causes self to use its LowerExp implementation when Debug-formatted.
§

fn fmt_lower_hex(self) -> FmtLowerHex<Self>
where Self: LowerHex,

Causes self to use its LowerHex implementation when Debug-formatted.
§

fn fmt_octal(self) -> FmtOctal<Self>
where Self: Octal,

Causes self to use its Octal implementation when Debug-formatted.
§

fn fmt_pointer(self) -> FmtPointer<Self>
where Self: Pointer,

Causes self to use its Pointer implementation when Debug-formatted.
§

fn fmt_upper_exp(self) -> FmtUpperExp<Self>
where Self: UpperExp,

Causes self to use its UpperExp implementation when Debug-formatted.
§

fn fmt_upper_hex(self) -> FmtUpperHex<Self>
where Self: UpperHex,

Causes self to use its UpperHex implementation when Debug-formatted.
§

fn fmt_list(self) -> FmtList<Self>
where &'a Self: for<'a> IntoIterator,

Formats each item in a sequence. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> FromCast<T> for T

§

fn from_cast(t: T) -> T

Numeric cast from T to Self.
§

impl<T> GetSetFdFlags for T

§

fn get_fd_flags(&self) -> Result<FdFlags, Error>
where T: AsFilelike,

Query the “status” flags for the self file descriptor.
§

fn new_set_fd_flags(&self, fd_flags: FdFlags) -> Result<SetFdFlags<T>, Error>
where T: AsFilelike,

Create a new SetFdFlags value for use with set_fd_flags. Read more
§

fn set_fd_flags(&mut self, set_fd_flags: SetFdFlags<T>) -> Result<(), Error>
where T: AsFilelike,

Set the “status” flags for the self file descriptor. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

§

impl<T> Pipe for T
where T: ?Sized,

§

fn pipe<R>(self, func: impl FnOnce(Self) -> R) -> R
where Self: Sized,

Pipes by value. This is generally the method you want to use. Read more
§

fn pipe_ref<'a, R>(&'a self, func: impl FnOnce(&'a Self) -> R) -> R
where R: 'a,

Borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_ref_mut<'a, R>(&'a mut self, func: impl FnOnce(&'a mut Self) -> R) -> R
where R: 'a,

Mutably borrows self and passes that borrow into the pipe function. Read more
§

fn pipe_borrow<'a, B, R>(&'a self, func: impl FnOnce(&'a B) -> R) -> R
where Self: Borrow<B>, B: 'a + ?Sized, R: 'a,

Borrows self, then passes self.borrow() into the pipe function. Read more
§

fn pipe_borrow_mut<'a, B, R>( &'a mut self, func: impl FnOnce(&'a mut B) -> R ) -> R
where Self: BorrowMut<B>, B: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more
§

fn pipe_as_ref<'a, U, R>(&'a self, func: impl FnOnce(&'a U) -> R) -> R
where Self: AsRef<U>, U: 'a + ?Sized, R: 'a,

Borrows self, then passes self.as_ref() into the pipe function.
§

fn pipe_as_mut<'a, U, R>(&'a mut self, func: impl FnOnce(&'a mut U) -> R) -> R
where Self: AsMut<U>, U: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.as_mut() into the pipe function.
§

fn pipe_deref<'a, T, R>(&'a self, func: impl FnOnce(&'a T) -> R) -> R
where Self: Deref<Target = T>, T: 'a + ?Sized, R: 'a,

Borrows self, then passes self.deref() into the pipe function.
§

fn pipe_deref_mut<'a, T, R>( &'a mut self, func: impl FnOnce(&'a mut T) -> R ) -> R
where Self: DerefMut<Target = T> + Deref, T: 'a + ?Sized, R: 'a,

Mutably borrows self, then passes self.deref_mut() into the pipe function.
§

impl<T> Pointable for T

§

const ALIGN: usize = _

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Pointee for T

§

type Pointer = u32

§

fn debug( pointer: <T as Pointee>::Pointer, f: &mut Formatter<'_> ) -> Result<(), Error>

source§

impl<T> Same for T

§

type Output = T

Should always be Self
§

impl<Context> SubContext<Context> for Context

§

fn sub_context(self) -> Context

§

impl<T> Tap for T

§

fn tap(self, func: impl FnOnce(&Self)) -> Self

Immutable access to a value. Read more
§

fn tap_mut(self, func: impl FnOnce(&mut Self)) -> Self

Mutable access to a value. Read more
§

fn tap_borrow<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Immutable access to the Borrow<B> of a value. Read more
§

fn tap_borrow_mut<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Mutable access to the BorrowMut<B> of a value. Read more
§

fn tap_ref<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Immutable access to the AsRef<R> view of a value. Read more
§

fn tap_ref_mut<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Mutable access to the AsMut<R> view of a value. Read more
§

fn tap_deref<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Immutable access to the Deref::Target of a value. Read more
§

fn tap_deref_mut<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Mutable access to the Deref::Target of a value. Read more
§

fn tap_dbg(self, func: impl FnOnce(&Self)) -> Self

Calls .tap() only in debug builds, and is erased in release builds.
§

fn tap_mut_dbg(self, func: impl FnOnce(&mut Self)) -> Self

Calls .tap_mut() only in debug builds, and is erased in release builds.
§

fn tap_borrow_dbg<B>(self, func: impl FnOnce(&B)) -> Self
where Self: Borrow<B>, B: ?Sized,

Calls .tap_borrow() only in debug builds, and is erased in release builds.
§

fn tap_borrow_mut_dbg<B>(self, func: impl FnOnce(&mut B)) -> Self
where Self: BorrowMut<B>, B: ?Sized,

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds.
§

fn tap_ref_dbg<R>(self, func: impl FnOnce(&R)) -> Self
where Self: AsRef<R>, R: ?Sized,

Calls .tap_ref() only in debug builds, and is erased in release builds.
§

fn tap_ref_mut_dbg<R>(self, func: impl FnOnce(&mut R)) -> Self
where Self: AsMut<R>, R: ?Sized,

Calls .tap_ref_mut() only in debug builds, and is erased in release builds.
§

fn tap_deref_dbg<T>(self, func: impl FnOnce(&T)) -> Self
where Self: Deref<Target = T>, T: ?Sized,

Calls .tap_deref() only in debug builds, and is erased in release builds.
§

fn tap_deref_mut_dbg<T>(self, func: impl FnOnce(&mut T)) -> Self
where Self: DerefMut<Target = T> + Deref, T: ?Sized,

Calls .tap_deref_mut() only in debug builds, and is erased in release builds.
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
§

impl<T> TryConv for T

§

fn try_conv<T>(self) -> Result<T, Self::Error>
where Self: TryInto<T>,

Attempts to convert self into T using TryInto<T>. Read more
§

impl<T> TryDefault for T
where T: Default,

§

fn try_default() -> Result<T, String>

Tries to create the default.
§

fn unwrap_default() -> Self

Calls try_default and panics on an error case.
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Any for T
where T: Any,

§

impl<T> CloneAny for T
where T: Any + Clone,

§

impl<T> CloneAnySend for T
where T: Any + Send + Clone,

§

impl<T> CloneAnySendSync for T
where T: Any + Send + Sync + Clone,

§

impl<T> CloneAnySync for T
where T: Any + Sync + Clone,

source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

§

impl<T> Event for T
where T: Send + Sync + 'static,

§

impl<T> Resource for T
where T: Any + Send + Sync,

§

impl<T> State for T
where T: Clone + Send + Sync + 'static,