Struct veloren_voxygen_anim::vek::vec4::Vec4
source · #[repr(simd)]pub struct Vec4<T> {
pub x: T,
pub y: T,
pub z: T,
pub w: T,
}
Expand description
Vector type suited for homogeneous 3D spatial coordinates.
Fields§
§x: T
§y: T
§z: T
§w: T
In homogeneous 3D-space coordinates, w
is often set to
1
for points, and 0
for directions.
One reason behind this: with floating-point numbers, division by zero gives infinity (a direction is then a point stretching infinitely towards another).
Implementations§
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn broadcast(val: T) -> Vec4<T>where
T: Copy,
pub fn broadcast(val: T) -> Vec4<T>where
T: Copy,
Broadcasts a single value to all elements of a new vector.
This function is also named splat()
in some libraries, or
set1()
in Intel intrinsics.
“Broadcast” was chosen as the name because it is explicit enough and is the same wording as the description in relevant Intel intrinsics.
assert_eq!(Vec4::broadcast(5), Vec4::new(5,5,5,5));
assert_eq!(Vec4::broadcast(5), Vec4::from(5));
sourcepub fn zero() -> Vec4<T>where
T: Zero,
pub fn zero() -> Vec4<T>where
T: Zero,
Creates a new vector with all elements set to zero.
assert_eq!(Vec4::zero(), Vec4::new(0,0,0,0));
assert_eq!(Vec4::zero(), Vec4::broadcast(0));
assert_eq!(Vec4::zero(), Vec4::from(0));
sourcepub fn one() -> Vec4<T>where
T: One,
pub fn one() -> Vec4<T>where
T: One,
Creates a new vector with all elements set to one.
assert_eq!(Vec4::one(), Vec4::new(1,1,1,1));
assert_eq!(Vec4::one(), Vec4::broadcast(1));
assert_eq!(Vec4::one(), Vec4::from(1));
sourcepub fn iota() -> Vec4<T>
pub fn iota() -> Vec4<T>
Produces a vector of the first n
integers, starting from zero,
where n
is the number of elements for this vector type.
The iota (ι) function, originating from APL.
See this StackOverflow answer.
This is mostly useful for debugging purposes and tests.
assert_eq!(Vec4::iota(), Vec4::new(0, 1, 2, 3));
sourcepub const fn elem_count(&self) -> usize
pub const fn elem_count(&self) -> usize
Convenience method which returns the number of elements of this vector.
let v = Vec4::new(0,1,2,3);
assert_eq!(v.elem_count(), 4);
sourcepub const ELEM_COUNT: usize = 4usize
pub const ELEM_COUNT: usize = 4usize
Convenience constant representing the number of elements for this vector type.
sourcepub fn into_tuple(self) -> (T, T, T, T)
pub fn into_tuple(self) -> (T, T, T, T)
Converts this into a tuple with the same number of elements by consuming.
sourcepub fn into_array(self) -> [T; 4]
pub fn into_array(self) -> [T; 4]
Converts this vector into a fixed-size array.
sourcepub fn as_mut_slice(&mut self) -> &mut [T]
pub fn as_mut_slice(&mut self) -> &mut [T]
View this vector as a mutable slice.
sourcepub fn from_slice(slice: &[T]) -> Vec4<T>
pub fn from_slice(slice: &[T]) -> Vec4<T>
Collects the content of a slice into a new vector. Elements are initialized to their default values.
sourcepub fn map<D, F>(self, f: F) -> Vec4<D>where
F: FnMut(T) -> D,
pub fn map<D, F>(self, f: F) -> Vec4<D>where
F: FnMut(T) -> D,
Returns a memberwise-converted copy of this vector, using the given conversion closure.
let v = Vec4::new(0_f32, 1., 1.8, 3.14);
let i = v.map(|x| x.round() as i32);
assert_eq!(i, Vec4::new(0, 1, 2, 3));
Performing LERP on integer vectors by concisely converting them to floats:
let a = Vec4::new(0,1,2,3).map(|x| x as f32);
let b = Vec4::new(2,3,4,5).map(|x| x as f32);
let v = Vec4::lerp(a, b, 0.5_f32).map(|x| x.round() as i32);
assert_eq!(v, Vec4::new(1,2,3,4));
sourcepub fn map2<D, F, S>(self, other: Vec4<S>, f: F) -> Vec4<D>where
F: FnMut(T, S) -> D,
pub fn map2<D, F, S>(self, other: Vec4<S>, f: F) -> Vec4<D>where
F: FnMut(T, S) -> D,
Applies the function f to each element of two vectors, pairwise, and returns the result.
let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let v = a.map2(b, |a, b| a.wrapping_add(b));
assert_eq!(v, Vec4::zero());
let v = a.map2(b, u8::wrapping_add);
assert_eq!(v, Vec4::zero());
sourcepub fn map3<D, F, S1, S2>(self, a: Vec4<S1>, b: Vec4<S2>, f: F) -> Vec4<D>where
F: FnMut(T, S1, S2) -> D,
pub fn map3<D, F, S1, S2>(self, a: Vec4<S1>, b: Vec4<S2>, f: F) -> Vec4<D>where
F: FnMut(T, S1, S2) -> D,
Applies the function f to each element of three vectors, and returns the result.
let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let c = Vec4::<u8>::new(1, 2, 3, 4);
let v = a.map3(b, c, |a, b, c| a.wrapping_add(b) + c);
assert_eq!(v, c);
sourcepub fn apply<F>(&mut self, f: F)
pub fn apply<F>(&mut self, f: F)
Applies the function f to each element of this vector, in-place.
let mut v = Vec4::new(0_u32, 1, 2, 3);
v.apply(|x| x.count_ones());
assert_eq!(v, Vec4::new(0, 1, 1, 2));
sourcepub fn apply2<F, S>(&mut self, other: Vec4<S>, f: F)
pub fn apply2<F, S>(&mut self, other: Vec4<S>, f: F)
Applies the function f to each element of two vectors, pairwise, in-place.
let mut a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
a.apply2(b, |a, b| a.wrapping_add(b));
assert_eq!(a, Vec4::zero());
a.apply2(b, u8::wrapping_add);
assert_eq!(a, b);
sourcepub fn apply3<F, S1, S2>(&mut self, a: Vec4<S1>, b: Vec4<S2>, f: F)
pub fn apply3<F, S1, S2>(&mut self, a: Vec4<S1>, b: Vec4<S2>, f: F)
Applies the function f to each element of three vectors, in-place.
let mut a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
let c = Vec4::<u8>::new(1, 2, 3, 4);
a.apply3(b, c, |a, b, c| a.wrapping_add(b) + c);
assert_eq!(a, c);
sourcepub fn zip<S>(self, other: Vec4<S>) -> Vec4<(T, S)>
pub fn zip<S>(self, other: Vec4<S>) -> Vec4<(T, S)>
“Zips” two vectors together into a vector of tuples.
let a = Vec4::<u8>::new(255, 254, 253, 252);
let b = Vec4::<u8>::new(1, 2, 3, 4);
assert_eq!(a.zip(b), Vec4::new((255, 1), (254, 2), (253, 3), (252, 4)));
sourcepub fn as_<D>(self) -> Vec4<D>where
T: AsPrimitive<D>,
D: 'static + Copy,
pub fn as_<D>(self) -> Vec4<D>where
T: AsPrimitive<D>,
D: 'static + Copy,
Returns a memberwise-converted copy of this vector, using AsPrimitive
.
§Examples
let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.as_();
assert_eq!(i, Vec4::new(0, 1, 2, 3));
§Safety
In Rust versions before 1.45.0, some uses of the as
operator were not entirely safe.
In particular, it was undefined behavior if
a truncated floating point value could not fit in the target integer
type (#10184);
let x: u8 = (1.04E+17).as_(); // UB
sourcepub fn numcast<D>(self) -> Option<Vec4<D>>
pub fn numcast<D>(self) -> Option<Vec4<D>>
Returns a memberwise-converted copy of this vector, using NumCast
.
let v = Vec4::new(0_f32, 1., 2., 3.);
let i: Vec4<i32> = v.numcast().unwrap();
assert_eq!(i, Vec4::new(0, 1, 2, 3));
sourcepub fn mul_add<V0, V1>(self, mul: V0, add: V1) -> Vec4<T>
pub fn mul_add<V0, V1>(self, mul: V0, add: V1) -> Vec4<T>
Fused multiply-add. Returns self * mul + add
, and may be implemented
efficiently by the hardware.
The compiler is often able to detect this kind of operation, so generally you don’t need to use it. However, it can make your intent clear.
The name for this method is the one used by the same operation on primitive floating-point types.
let a = Vec4::new(0,1,2,3);
let b = Vec4::new(4,5,6,7);
let c = Vec4::new(8,9,0,1);
assert_eq!(a*b+c, a.mul_add(b, c));
sourcepub fn is_any_negative(&self) -> boolwhere
T: Signed,
pub fn is_any_negative(&self) -> boolwhere
T: Signed,
Is any of the elements negative ?
This was intended for checking the validity of extent vectors, but can make sense for other types too.
sourcepub fn are_all_positive(&self) -> boolwhere
T: Signed,
pub fn are_all_positive(&self) -> boolwhere
T: Signed,
Are all of the elements positive ?
sourcepub fn min<V0, V1>(a: V0, b: V1) -> Vec4<T>
pub fn min<V0, V1>(a: V0, b: V1) -> Vec4<T>
Compares elements of a
and b
, and returns the minimum values into a new
vector, using total ordering.
let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(0,1,1,0);
assert_eq!(m, Vec4::min(a, b));
sourcepub fn max<V0, V1>(a: V0, b: V1) -> Vec4<T>
pub fn max<V0, V1>(a: V0, b: V1) -> Vec4<T>
Compares elements of a
and b
, and returns the maximum values into a new
vector, using total ordering.
let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(3,2,2,3);
assert_eq!(m, Vec4::max(a, b));
sourcepub fn partial_min<V0, V1>(a: V0, b: V1) -> Vec4<T>
pub fn partial_min<V0, V1>(a: V0, b: V1) -> Vec4<T>
Compares elements of a
and b
, and returns the minimum values into a new
vector, using partial ordering.
let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(0,1,1,0);
assert_eq!(m, Vec4::partial_min(a, b));
sourcepub fn partial_max<V0, V1>(a: V0, b: V1) -> Vec4<T>
pub fn partial_max<V0, V1>(a: V0, b: V1) -> Vec4<T>
Compares elements of a
and b
, and returns the maximum values into a new
vector, using partial ordering.
let a = Vec4::new(0,1,2,3);
let b = Vec4::new(3,2,1,0);
let m = Vec4::new(3,2,2,3);
assert_eq!(m, Vec4::partial_max(a, b));
sourcepub fn reduce_min(self) -> Twhere
T: Ord,
pub fn reduce_min(self) -> Twhere
T: Ord,
Returns the element which has the lowest value in this vector, using total ordering.
assert_eq!(-5, Vec4::new(0, 5, -5, 8).reduce_min());
sourcepub fn reduce_max(self) -> Twhere
T: Ord,
pub fn reduce_max(self) -> Twhere
T: Ord,
Returns the element which has the highest value in this vector, using total ordering.
assert_eq!(8, Vec4::new(0, 5, -5, 8).reduce_max());
sourcepub fn reduce_partial_min(self) -> Twhere
T: PartialOrd,
pub fn reduce_partial_min(self) -> Twhere
T: PartialOrd,
Returns the element which has the lowest value in this vector, using partial ordering.
assert_eq!(-5_f32, Vec4::new(0_f32, 5., -5., 8.).reduce_partial_min());
sourcepub fn reduce_partial_max(self) -> Twhere
T: PartialOrd,
pub fn reduce_partial_max(self) -> Twhere
T: PartialOrd,
Returns the element which has the highest value in this vector, using partial ordering.
assert_eq!(8_f32, Vec4::new(0_f32, 5., -5., 8.).reduce_partial_max());
sourcepub fn reduce_bitand(self) -> Twhere
T: BitAnd<Output = T>,
pub fn reduce_bitand(self) -> Twhere
T: BitAnd<Output = T>,
Returns the result of bitwise-AND (&
) on all elements of this vector.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_bitand());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_bitand());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_bitand());
sourcepub fn reduce_bitor(self) -> Twhere
T: BitOr<Output = T>,
pub fn reduce_bitor(self) -> Twhere
T: BitOr<Output = T>,
Returns the result of bitwise-OR (|
) on all elements of this vector.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_bitor());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_bitor());
sourcepub fn reduce_bitxor(self) -> Twhere
T: BitXor<Output = T>,
pub fn reduce_bitxor(self) -> Twhere
T: BitXor<Output = T>,
Returns the result of bitwise-XOR (^
) on all elements of this vector.
assert_eq!(false, Vec4::new(true, true, true, true).reduce_bitxor());
assert_eq!(true, Vec4::new(true, false, true, true).reduce_bitxor());
sourcepub fn reduce<F>(self, f: F) -> Twhere
F: FnMut(T, T) -> T,
pub fn reduce<F>(self, f: F) -> Twhere
F: FnMut(T, T) -> T,
Reduces this vector with the given accumulator closure.
sourcepub fn product(self) -> Twhere
T: Mul<Output = T>,
pub fn product(self) -> Twhere
T: Mul<Output = T>,
Returns the product of each of this vector’s elements.
assert_eq!(1*2*3*4, Vec4::new(1, 2, 3, 4).product());
sourcepub fn sum(self) -> Twhere
T: Add<Output = T>,
pub fn sum(self) -> Twhere
T: Add<Output = T>,
Returns the sum of each of this vector’s elements.
assert_eq!(1+2+3+4, Vec4::new(1, 2, 3, 4).sum());
sourcepub fn average(self) -> T
pub fn average(self) -> T
Returns the average of this vector’s elements.
assert_eq!(2.5_f32, Vec4::new(1_f32, 2., 3., 4.).average());
You should avoid using it on u8
vectors, not only because integer
overflows cause panics in debug mode, but also because of integer division, the result
may not be the one you expect.
// This causes a panic!
let red = Vec4::new(255u8, 1, 0, 0);
let grey_level = red.average();
assert_eq!(grey_level, 128);
You may want to convert the elements to bigger integers (or floating-point) instead:
let red = Vec4::new(255u8, 1, 128, 128);
let red = red.map(|c| c as u16);
let grey_level = red.average() as u8;
assert_eq!(grey_level, 128);
let red = red.map(|c| c as f32);
let grey_level = red.average().round() as u8;
assert_eq!(grey_level, 128);
sourcepub fn sqrt(self) -> Vec4<T>where
T: Real,
pub fn sqrt(self) -> Vec4<T>where
T: Real,
Returns a new vector which elements are the respective square roots of this vector’s elements.
let v = Vec4::new(1f32, 2f32, 3f32, 4f32);
let s = Vec4::new(1f32, 4f32, 9f32, 16f32);
assert_eq!(v, s.sqrt());
sourcepub fn rsqrt(self) -> Vec4<T>where
T: Real,
pub fn rsqrt(self) -> Vec4<T>where
T: Real,
Returns a new vector which elements are the respective reciprocal square roots of this vector’s elements.
let v = Vec4::new(1f32, 0.5f32, 1f32/3f32, 0.25f32);
let s = Vec4::new(1f32, 4f32, 9f32, 16f32);
assert_eq!(v, s.rsqrt());
sourcepub fn recip(self) -> Vec4<T>where
T: Real,
pub fn recip(self) -> Vec4<T>where
T: Real,
Returns a new vector which elements are the respective reciprocal of this vector’s elements.
let v = Vec4::new(1f32, 0.5f32, 0.25f32, 0.125f32);
let s = Vec4::new(1f32, 2f32, 4f32, 8f32);
assert_eq!(v, s.recip());
assert_eq!(s, v.recip());
sourcepub fn ceil(self) -> Vec4<T>where
T: Real,
pub fn ceil(self) -> Vec4<T>where
T: Real,
Returns a new vector which elements are rounded to the nearest greater integer.
let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.ceil(), Vec4::new(0f32, 1f32, 2f32, 4f32));
sourcepub fn floor(self) -> Vec4<T>where
T: Real,
pub fn floor(self) -> Vec4<T>where
T: Real,
Returns a new vector which elements are rounded down to the nearest lower integer.
let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.floor(), Vec4::new(0f32, 1f32, 1f32, 3f32));
sourcepub fn round(self) -> Vec4<T>where
T: Real,
pub fn round(self) -> Vec4<T>where
T: Real,
Returns a new vector which elements are rounded to the nearest integer.
let v = Vec4::new(0_f32, 1., 1.8, 3.14);
assert_eq!(v.round(), Vec4::new(0f32, 1f32, 2f32, 3f32));
sourcepub fn hadd(self, rhs: Vec4<T>) -> Vec4<T>where
T: Add<Output = T>,
pub fn hadd(self, rhs: Vec4<T>) -> Vec4<T>where
T: Add<Output = T>,
Horizontally adds adjacent pairs of elements in self
and rhs
into a new vector.
let a = Vec4::new(0, 1, 2, 3);
let b = Vec4::new(4, 5, 6, 7);
let h = Vec4::new(0+1, 2+3, 4+5, 6+7);
assert_eq!(h, a.hadd(b));
sourcepub fn partial_cmpeq<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn partial_cmpeq<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial equality test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpeq(&v), Vec4::new(true, false, true, false));
sourcepub fn partial_cmpeq_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn partial_cmpeq_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial equality test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpeq(&v), Vec4::new(true, false, true, false));
sourcepub fn partial_cmpne<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn partial_cmpne<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial not-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpne(&v), Vec4::new(false, true, false, true));
sourcepub fn partial_cmpne_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn partial_cmpne_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial not-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpne(&v), Vec4::new(false, true, false, true));
sourcepub fn partial_cmpge<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn partial_cmpge<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial greater-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpge(&v), Vec4::new(true, true, true, false));
sourcepub fn partial_cmpge_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn partial_cmpge_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial greater-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpge(&v), Vec4::new(true, true, true, false));
sourcepub fn partial_cmpgt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn partial_cmpgt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial greater-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpgt(&v), Vec4::new(false, true, false, true));
sourcepub fn partial_cmpgt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn partial_cmpgt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial greater-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmpgt(&v), Vec4::new(false, true, false, true));
sourcepub fn partial_cmple<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn partial_cmple<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial less-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmple(&v), Vec4::new(true, false, true, true));
sourcepub fn partial_cmple_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn partial_cmple_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial less-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmple(&v), Vec4::new(true, false, true, true));
sourcepub fn partial_cmplt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn partial_cmplt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial less-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmplt(&v), Vec4::new(false, false, false, true));
sourcepub fn partial_cmplt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn partial_cmplt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial less-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.partial_cmplt(&v), Vec4::new(false, false, false, true));
sourcepub fn cmpeq<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn cmpeq<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the partial equality test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpeq(&v), Vec4::new(true, false, true, false));
sourcepub fn cmpeq_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn cmpeq_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the partial equality test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpeq(&v), Vec4::new(true, false, true, false));
sourcepub fn cmpne<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn cmpne<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the total not-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpne(&v), Vec4::new(false, true, false, true));
sourcepub fn cmpne_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn cmpne_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the total not-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpne(&v), Vec4::new(false, true, false, true));
sourcepub fn cmpge<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn cmpge<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the total greater-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpge(&v), Vec4::new(true, true, true, false));
sourcepub fn cmpge_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn cmpge_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the total greater-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpge(&v), Vec4::new(true, true, true, false));
sourcepub fn cmpgt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn cmpgt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the total greater-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpgt(&v), Vec4::new(false, true, false, true));
sourcepub fn cmpgt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn cmpgt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the total greater-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,6);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmpgt(&v), Vec4::new(false, true, false, true));
sourcepub fn cmple<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn cmple<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the total less-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmple(&v), Vec4::new(true, false, true, true));
sourcepub fn cmple_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn cmple_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the total less-or-equal test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmple(&v), Vec4::new(true, false, true, true));
sourcepub fn cmplt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
pub fn cmplt<Rhs>(&self, rhs: &Rhs) -> Vec4<bool>
Compares each element of two vectors with the total less-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmplt(&v), Vec4::new(false, false, false, true));
sourcepub fn cmplt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
pub fn cmplt_simd(self, rhs: Vec4<T>) -> Vec4<<T as SimdElement>::Mask>
Compares each element of two vectors with the total less-than test, returning a boolean vector.
The version ending with _simd
is best utilized with the features “repr_simd” and “platform_intrinsics” enabled; otherwise, it falls back to regular scalar code.
Note that SIMD intrinsics do not actually distinguish partial ordering from total ordering.
let u = Vec4::new(0,2,2,2);
let v = Vec4::new(0,1,2,3);
assert_eq!(u.cmplt(&v), Vec4::new(false, false, false, true));
sourcepub fn lerp_unclamped_precise<S>(
from: Vec4<T>,
to: Vec4<T>,
factor: S,
) -> Vec4<T>
pub fn lerp_unclamped_precise<S>( from: Vec4<T>, to: Vec4<T>, factor: S, ) -> Vec4<T>
Returns the linear interpolation of from
to to
with factor
unconstrained.
See the Lerp
trait.
sourcepub fn lerp_unclamped<S>(from: Vec4<T>, to: Vec4<T>, factor: S) -> Vec4<T>
pub fn lerp_unclamped<S>(from: Vec4<T>, to: Vec4<T>, factor: S) -> Vec4<T>
Same as lerp_unclamped_precise
, implemented as a possibly faster but less precise operation.
See the Lerp
trait.
sourcepub fn lerp<S>(from: Vec4<T>, to: Vec4<T>, factor: S) -> Vec4<T>
pub fn lerp<S>(from: Vec4<T>, to: Vec4<T>, factor: S) -> Vec4<T>
Returns the linear interpolation of from
to to
with factor
constrained to be
between 0 and 1.
See the Lerp
trait.
sourcepub fn lerp_precise<S>(from: Vec4<T>, to: Vec4<T>, factor: S) -> Vec4<T>
pub fn lerp_precise<S>(from: Vec4<T>, to: Vec4<T>, factor: S) -> Vec4<T>
Returns the linear interpolation of from
to to
with factor
constrained to be
between 0 and 1.
See the Lerp
trait.
source§impl Vec4<bool>
impl Vec4<bool>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
sourcepub fn reduce_ne(self) -> bool
👎Deprecated since 0.15.8: This operation makes no sense and has no native SIMD support. As the compiler reports, comparison operators such as != cannot be chained. Chaining with booleans is allowed, but whacky.
pub fn reduce_ne(self) -> bool
Reduces this vector using total inequality. Note that this operation doesn’t actually make much sense and has no native SIMD support.
source§impl Vec4<i8>
impl Vec4<i8>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<i8>>
impl Vec4<Wrapping<i8>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<i16>
impl Vec4<i16>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<i16>>
impl Vec4<Wrapping<i16>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<i32>
impl Vec4<i32>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<i32>>
impl Vec4<Wrapping<i32>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<i64>
impl Vec4<i64>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<i64>>
impl Vec4<Wrapping<i64>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<u8>
impl Vec4<u8>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<u8>>
impl Vec4<Wrapping<u8>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<u16>
impl Vec4<u16>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<u16>>
impl Vec4<Wrapping<u16>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<u32>
impl Vec4<u32>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<u32>>
impl Vec4<Wrapping<u32>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<u64>
impl Vec4<u64>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<Wrapping<u64>>
impl Vec4<Wrapping<u64>>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<f32>
impl Vec4<f32>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl Vec4<f64>
impl Vec4<f64>
sourcepub fn reduce_and(self) -> bool
pub fn reduce_and(self) -> bool
Returns the result of logical AND (&&
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(true, Vec4::new(true, true, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, false, true, true).reduce_and());
assert_eq!(false, Vec4::new(true, true, true, false).reduce_and());
sourcepub fn reduce_or(self) -> bool
pub fn reduce_or(self) -> bool
Returns the result of logical OR (||
) on all elements of this vector.
Each element is converted to bool
as follows: zero is false
, and any other value is true
.
assert_eq!(false, Vec4::new(false, false, false, false).reduce_or());
assert_eq!(true, Vec4::new(false, false, true, false).reduce_or());
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn into_repr_c(self) -> Vec4<T>
pub fn into_repr_c(self) -> Vec4<T>
Converts this vector into its #[repr(C)]
counterpart.
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn magnitude_squared(self) -> T
pub fn magnitude_squared(self) -> T
The squared magnitude of a vector is its spatial length, squared.
It is slightly cheaper to compute than magnitude
because it avoids a square root.
sourcepub fn distance_squared(self, v: Vec4<T>) -> T
pub fn distance_squared(self, v: Vec4<T>) -> T
Squared distance between two point vectors.
It is slightly cheaper to compute than distance
because it avoids a square root.
sourcepub fn normalized(self) -> Vec4<T>
pub fn normalized(self) -> Vec4<T>
Get a copy of this direction vector such that its length equals 1.
sourcepub fn try_normalized<E>(self) -> Option<Vec4<T>>
pub fn try_normalized<E>(self) -> Option<Vec4<T>>
Get a copy of this direction vector such that its length equals 1. If all components approximately zero, None is returned (uses RelativeEq).
sourcepub fn normalize_and_get_magnitude(&mut self) -> T
pub fn normalize_and_get_magnitude(&mut self) -> T
Divide this vector’s components such that its length equals 1, and also returns the previous length.
sourcepub fn normalized_and_get_magnitude(self) -> (Vec4<T>, T)
pub fn normalized_and_get_magnitude(self) -> (Vec4<T>, T)
Get a copy of this direction vector such that its length equals 1, and also returns the length of the original vector.
sourcepub fn is_normalized<E>(self) -> bool
pub fn is_normalized<E>(self) -> bool
Is this vector normalized ? (Uses RelativeEq
)
sourcepub fn is_approx_zero<E>(self) -> bool
pub fn is_approx_zero<E>(self) -> bool
Is this vector approximately zero ? (Uses RelativeEq
)
sourcepub fn is_magnitude_close_to<E>(self, x: T) -> bool
pub fn is_magnitude_close_to<E>(self, x: T) -> bool
Is the magnitude of the vector close to x
? (Uses RelativeEq
)
sourcepub fn angle_between(self, v: Vec4<T>) -> T
pub fn angle_between(self, v: Vec4<T>) -> T
Get the smallest angle, in radians, between two direction vectors.
sourcepub fn angle_between_degrees(self, v: Vec4<T>) -> T
👎Deprecated: Use to_degrees()
on the value returned by angle_between()
instead
pub fn angle_between_degrees(self, v: Vec4<T>) -> T
to_degrees()
on the value returned by angle_between()
insteadGet the smallest angle, in degrees, between two direction vectors.
sourcepub fn reflected(self, surface_normal: Vec4<T>) -> Vec4<T>
pub fn reflected(self, surface_normal: Vec4<T>) -> Vec4<T>
The reflection direction for this vector on a surface which normal is given.
sourcepub fn refracted(self, surface_normal: Vec4<T>, eta: T) -> Vec4<T>
pub fn refracted(self, surface_normal: Vec4<T>, eta: T) -> Vec4<T>
The refraction vector for this incident vector, a surface normal and a ratio of
indices of refraction (eta
).
sourcepub fn face_forward(self, incident: Vec4<T>, reference: Vec4<T>) -> Vec4<T>
pub fn face_forward(self, incident: Vec4<T>, reference: Vec4<T>) -> Vec4<T>
Orients a vector to point away from a surface as defined by its normal.
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn new_point(x: T, y: T, z: T) -> Vec4<T>where
T: One,
pub fn new_point(x: T, y: T, z: T) -> Vec4<T>where
T: One,
Creates a point vector in homogeneous coordinates (sets the last coordinate to 1).
sourcepub fn new_direction(x: T, y: T, z: T) -> Vec4<T>where
T: Zero,
pub fn new_direction(x: T, y: T, z: T) -> Vec4<T>where
T: Zero,
Creates a direction vector in homogeneous coordinates (sets the last coordinate to 0).
sourcepub fn from_point<V>(v: V) -> Vec4<T>
pub fn from_point<V>(v: V) -> Vec4<T>
Turns a vector into a point vector in homogeneous coordinates (sets the last coordinate to 1).
sourcepub fn from_direction<V>(v: V) -> Vec4<T>
pub fn from_direction<V>(v: V) -> Vec4<T>
Turns a vector into a direction vector in homogeneous coordinates (sets the last coordinate to 0).
sourcepub fn left() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn left() -> Vec4<T>
Get the unit direction vector which has x
set to -1.
sourcepub fn right() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn right() -> Vec4<T>
Get the unit direction vector which has x
set to 1.
sourcepub fn up() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn up() -> Vec4<T>
Get the unit direction vector which has y
set to 1.
sourcepub fn down() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn down() -> Vec4<T>
Get the unit direction vector which has y
set to -1.
sourcepub fn forward_lh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn forward_lh() -> Vec4<T>
Get the unit direction vector which has z
set to 1 (“forward” in a left-handed coordinate system).
sourcepub fn forward_rh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn forward_rh() -> Vec4<T>
Get the unit direction vector which has z
set to -1 (“forward” in a right-handed coordinate system).
sourcepub fn back_lh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn back_lh() -> Vec4<T>
Get the unit direction vector which has z
set to -1 (“back” in a left-handed coordinate system).
sourcepub fn back_rh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn back_rh() -> Vec4<T>
Get the unit direction vector which has z
set to 1 (“back” in a right-handed coordinate system).
sourcepub fn unit_x_point() -> Vec4<T>
pub fn unit_x_point() -> Vec4<T>
Get the homogeneous point vector which has x
set to 1.
sourcepub fn unit_y_point() -> Vec4<T>
pub fn unit_y_point() -> Vec4<T>
Get the homogeneous point vector which has y
set to 1.
sourcepub fn unit_z_point() -> Vec4<T>
pub fn unit_z_point() -> Vec4<T>
Get the homogeneous point vector which has z
set to 1.
sourcepub fn left_point() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn left_point() -> Vec4<T>
Get the homogeneous point vector which has x
set to -1.
sourcepub fn right_point() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn right_point() -> Vec4<T>
Get the homogeneous point vector which has x
set to 1.
sourcepub fn up_point() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn up_point() -> Vec4<T>
Get the homogeneous point vector which has y
set to 1.
sourcepub fn down_point() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn down_point() -> Vec4<T>
Get the homogeneous point vector which has y
set to -1.
sourcepub fn forward_point_lh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn forward_point_lh() -> Vec4<T>
Get the homogeneous point vector which has z
set to 1 (“forward” in a left-handed coordinate system).
sourcepub fn forward_point_rh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn forward_point_rh() -> Vec4<T>
Get the homogeneous point vector which has z
set to -1 (“forward” in a right-handed coordinate system).
sourcepub fn back_point_lh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn back_point_lh() -> Vec4<T>
Get the homogeneous point vector which has z
set to -1 (“back” in a left-handed coordinate system).
sourcepub fn back_point_rh() -> Vec4<T>
👎Deprecated since 0.14.0: This function is opinionated about the semantics of X,Y and Z axii, and should not be used. The mapping of axii (X,Y,Z) to perceived directions (e.g right, up, forward) is not universal at all and varies between libraries, graphics APIs, content creation tools and engines. If you want such helper functions, you should write these yourself as part of the package you’re working on, according to what you know about YOUR current coordinate space.
pub fn back_point_rh() -> Vec4<T>
Get the homogeneous point vector which has z
set to 1 (“back” in a right-handed coordinate system).
sourcepub fn homogenized(self) -> Vec4<T>
pub fn homogenized(self) -> Vec4<T>
Get a copy of this vector where each component has been divided in order to
make w = 1
.
More info: A homogeneous point has w = 1
. Some operations (e.g. projection)
can cause this to no longer be the case. Homogenization is when you divide
every component of the vector by w
. This makes w = 1
and the remaining
components are also appropriately scaled. This process is also called
“normalization” in some textbooks, but that name is already taken by
other methods of this struct.
If w = 0
, this method will result in a division by zero. Be careful!
sourcepub fn homogenize(&mut self)
pub fn homogenize(&mut self)
Divide the vector’s components such that w = 1
.
See the homogenized
method for more information.
sourcepub fn is_homogeneous(self) -> bool
pub fn is_homogeneous(self) -> bool
Returns true if this vector is homogeneous (w = 0
or w = 1
).
Uses RelativeEq
.
sourcepub fn is_point(self) -> boolwhere
T: RelativeEq + One,
pub fn is_point(self) -> boolwhere
T: RelativeEq + One,
Returns true if this vector is a homogeneous point (w = 1
).
Uses RelativeEq
.
sourcepub fn is_direction(self) -> boolwhere
T: RelativeEq + Zero,
pub fn is_direction(self) -> boolwhere
T: RelativeEq + Zero,
Returns true if this vector is a homogeneous direction (w = 0
).
Uses RelativeEq
.
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn shuffled<M>(self, mask: M) -> Vec4<T>
pub fn shuffled<M>(self, mask: M) -> Vec4<T>
Shuffle elements from this vector, using mask
.
The relevant x86 intrinsic is _mm_shuffle_ps(v, v, mask)
.
let a = Vec4::<u32>::new(0,1,2,3);
assert_eq!(a.shuffled((0,1,2,3)), Vec4::new(0,1,2,3));
assert_eq!(a.shuffled((3,2,1,0)), Vec4::new(3,2,1,0));
assert_eq!(a.shuffled((2,3,4,5)), Vec4::new(2,3,0,1));
assert_eq!(a.shuffled(1), Vec4::new(1,1,1,1));
assert_eq!(a.shuffled(1), Vec4::broadcast(1));
sourcepub fn shuffled_0101(self) -> Vec4<T>where
T: Copy,
pub fn shuffled_0101(self) -> Vec4<T>where
T: Copy,
Moves the lower two elements of this vector to the upper two elements of the result. The lower two elements of this vector are passed through to the result.
The relevant x86 intrinsic is _mm_movelh_ps(v, v)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(0,1,0,1);
assert_eq!(a.shuffled_0101(), b);
sourcepub fn shuffled_2323(self) -> Vec4<T>where
T: Copy,
pub fn shuffled_2323(self) -> Vec4<T>where
T: Copy,
Moves the upper two elements of this vector to the lower two elements of the result. The upper two elements of this vector are passed through to the result.
The relevant x86 intrinsic is _mm_movehl_ps(v, v)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(2,3,2,3);
assert_eq!(a.shuffled_2323(), b);
sourcepub fn shuffle_lo_hi<M>(lo: Vec4<T>, hi: Vec4<T>, mask: M) -> Vec4<T>
pub fn shuffle_lo_hi<M>(lo: Vec4<T>, hi: Vec4<T>, mask: M) -> Vec4<T>
Shuffle elements from lo
’s low part and hi
’s high part using mask
.
To shuffle a single vector, you may pass it as the first two arguments,
or use the shuffled()
method.
The relevant x86 intrinsic is _mm_shuffle_ps(lo, hi, mask)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
assert_eq!(Vec4::shuffle_lo_hi(a, b, (0,1,2,3)), Vec4::new(0,1,6,7));
assert_eq!(Vec4::shuffle_lo_hi(a, b, (3,2,1,0)), Vec4::new(3,2,5,4));
sourcepub fn interleave_0011(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
pub fn interleave_0011(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
Interleaves the lower two elements from a
and b
.
The relevant x86 intrinsic is _mm_unpacklo_ps(a, b)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(0,4,1,5);
assert_eq!(Vec4::interleave_0011(a, b), c);
sourcepub fn interleave_2233(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
pub fn interleave_2233(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
Interleaves the upper two elements from a
and b
.
The relevant x86 intrinsic is _mm_unpackhi_ps(a, b)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(2,6,3,7);
assert_eq!(Vec4::interleave_2233(a, b), c);
sourcepub fn shuffle_lo_hi_0101(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
pub fn shuffle_lo_hi_0101(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
Moves the lower two elements of b
to the upper two elements of the result.
The lower two elements of a
are passed through to the result.
The relevant x86 intrinsic is _mm_movelh_ps(a, b)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(0,1,4,5);
assert_eq!(Vec4::shuffle_lo_hi_0101(a, b), c);
sourcepub fn shuffle_hi_lo_2323(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
pub fn shuffle_hi_lo_2323(a: Vec4<T>, b: Vec4<T>) -> Vec4<T>
Moves the upper two elements of b
to the lower two elements of the result.
The upper two elements of a
are passed through to the result.
The relevant x86 intrinsic is _mm_movehl_ps(a, b)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(4,5,6,7);
let c = Vec4::<u32>::new(6,7,2,3);
assert_eq!(Vec4::shuffle_hi_lo_2323(a, b), c);
sourcepub fn shuffled_0022(self) -> Vec4<T>where
T: Copy,
pub fn shuffled_0022(self) -> Vec4<T>where
T: Copy,
Returns a copy of this vector with v[1]
set to v[0]
and v[3]
set to v[2]
.
The relevant x86 intrinsic is _mm_moveldup_ps(v)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(0,0,2,2);
assert_eq!(a.shuffled_0022(), b);
sourcepub fn shuffled_1133(self) -> Vec4<T>where
T: Copy,
pub fn shuffled_1133(self) -> Vec4<T>where
T: Copy,
Returns a copy of this vector with v[0]
set to v[1]
and v[2]
set to v[3]
.
The relevant x86 intrinsic is _mm_movehdup_ps(v)
.
let a = Vec4::<u32>::new(0,1,2,3);
let b = Vec4::<u32>::new(1,1,3,3);
assert_eq!(a.shuffled_1133(), b);
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn mat2_rows_mul(self, rhs: Vec4<T>) -> Vec4<T>
pub fn mat2_rows_mul(self, rhs: Vec4<T>) -> Vec4<T>
Performs 2x2 matrix multiplication, treating each Vec4
as a row-major 2x2 matrix.
let a = Vec4::new(
0,1,
2,3
);
let b = Vec4::new(
2,3,
6,11
);
assert_eq!(a.mat2_rows_mul(a), b)
sourcepub fn mat2_rows_adj_mul(self, rhs: Vec4<T>) -> Vec4<T>
pub fn mat2_rows_adj_mul(self, rhs: Vec4<T>) -> Vec4<T>
2x2 row-major Matrix adjugate multiply (A#)*B
sourcepub fn mat2_rows_mul_adj(self, rhs: Vec4<T>) -> Vec4<T>
pub fn mat2_rows_mul_adj(self, rhs: Vec4<T>) -> Vec4<T>
2x2 row-major Matrix multiply adjugate A*(B#)
sourcepub fn mat2_cols_mul(self, rhs: Vec4<T>) -> Vec4<T>
pub fn mat2_cols_mul(self, rhs: Vec4<T>) -> Vec4<T>
Performs 2x2 matrix multiplication, treating each Vec4
as a column-major 2x2 matrix.
let a = Vec4::new(
0,2,
1,3
);
let b = Vec4::new(
2,6,
3,11
);
assert_eq!(a.mat2_cols_mul(a), b)
sourcepub fn mat2_cols_adj_mul(self, rhs: Vec4<T>) -> Vec4<T>
pub fn mat2_cols_adj_mul(self, rhs: Vec4<T>) -> Vec4<T>
2x2 column-major Matrix adjugate multiply (A#)*B
sourcepub fn mat2_cols_mul_adj(self, rhs: Vec4<T>) -> Vec4<T>
pub fn mat2_cols_mul_adj(self, rhs: Vec4<T>) -> Vec4<T>
2x2 column-major Matrix multiply adjugate A*(B#)
source§impl<T> Vec4<T>
impl<T> Vec4<T>
sourcepub fn wxyz(self) -> Vec4<T>
pub fn wxyz(self) -> Vec4<T>
Returns a copy of this vector, with W placed first and XYZ shifted to the right. This may be useful because some quaternion implementations store their elements in WXYZ order.
Methods from Deref<Target = [T]>§
1.80.0 · sourcepub fn as_flattened(&self) -> &[T]
pub fn as_flattened(&self) -> &[T]
Takes a &[[T; N]]
, and flattens it to a &[T]
.
§Panics
This panics if the length of the resulting slice would overflow a usize
.
This is only possible when flattening a slice of arrays of zero-sized
types, and thus tends to be irrelevant in practice. If
size_of::<T>() > 0
, this will never panic.
§Examples
assert_eq!([[1, 2, 3], [4, 5, 6]].as_flattened(), &[1, 2, 3, 4, 5, 6]);
assert_eq!(
[[1, 2, 3], [4, 5, 6]].as_flattened(),
[[1, 2], [3, 4], [5, 6]].as_flattened(),
);
let slice_of_empty_arrays: &[[i32; 0]] = &[[], [], [], [], []];
assert!(slice_of_empty_arrays.as_flattened().is_empty());
let empty_slice_of_arrays: &[[u32; 10]] = &[];
assert!(empty_slice_of_arrays.as_flattened().is_empty());
1.80.0 · sourcepub fn as_flattened_mut(&mut self) -> &mut [T]
pub fn as_flattened_mut(&mut self) -> &mut [T]
Takes a &mut [[T; N]]
, and flattens it to a &mut [T]
.
§Panics
This panics if the length of the resulting slice would overflow a usize
.
This is only possible when flattening a slice of arrays of zero-sized
types, and thus tends to be irrelevant in practice. If
size_of::<T>() > 0
, this will never panic.
§Examples
fn add_5_to_all(slice: &mut [i32]) {
for i in slice {
*i += 5;
}
}
let mut array = [[1, 2, 3], [4, 5, 6], [7, 8, 9]];
add_5_to_all(array.as_flattened_mut());
assert_eq!(array, [[6, 7, 8], [9, 10, 11], [12, 13, 14]]);
1.0.0 · sourcepub fn is_empty(&self) -> bool
pub fn is_empty(&self) -> bool
Returns true
if the slice has a length of 0.
§Examples
let a = [1, 2, 3];
assert!(!a.is_empty());
let b: &[i32] = &[];
assert!(b.is_empty());
1.0.0 · sourcepub fn first(&self) -> Option<&T>
pub fn first(&self) -> Option<&T>
Returns the first element of the slice, or None
if it is empty.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());
let w: &[i32] = &[];
assert_eq!(None, w.first());
1.0.0 · sourcepub fn first_mut(&mut self) -> Option<&mut T>
pub fn first_mut(&mut self) -> Option<&mut T>
Returns a mutable pointer to the first element of the slice, or None
if it is empty.
§Examples
let x = &mut [0, 1, 2];
if let Some(first) = x.first_mut() {
*first = 5;
}
assert_eq!(x, &[5, 1, 2]);
let y: &mut [i32] = &mut [];
assert_eq!(None, y.first_mut());
1.5.0 · sourcepub fn split_first(&self) -> Option<(&T, &[T])>
pub fn split_first(&self) -> Option<(&T, &[T])>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
§Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first() {
assert_eq!(first, &0);
assert_eq!(elements, &[1, 2]);
}
1.5.0 · sourcepub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
§Examples
let x = &mut [0, 1, 2];
if let Some((first, elements)) = x.split_first_mut() {
*first = 3;
elements[0] = 4;
elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);
1.5.0 · sourcepub fn split_last(&self) -> Option<(&T, &[T])>
pub fn split_last(&self) -> Option<(&T, &[T])>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
§Examples
let x = &[0, 1, 2];
if let Some((last, elements)) = x.split_last() {
assert_eq!(last, &2);
assert_eq!(elements, &[0, 1]);
}
1.5.0 · sourcepub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
§Examples
let x = &mut [0, 1, 2];
if let Some((last, elements)) = x.split_last_mut() {
*last = 3;
elements[0] = 4;
elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);
1.0.0 · sourcepub fn last(&self) -> Option<&T>
pub fn last(&self) -> Option<&T>
Returns the last element of the slice, or None
if it is empty.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());
let w: &[i32] = &[];
assert_eq!(None, w.last());
1.0.0 · sourcepub fn last_mut(&mut self) -> Option<&mut T>
pub fn last_mut(&mut self) -> Option<&mut T>
Returns a mutable reference to the last item in the slice, or None
if it is empty.
§Examples
let x = &mut [0, 1, 2];
if let Some(last) = x.last_mut() {
*last = 10;
}
assert_eq!(x, &[0, 1, 10]);
let y: &mut [i32] = &mut [];
assert_eq!(None, y.last_mut());
1.77.0 · sourcepub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>
pub fn first_chunk<const N: usize>(&self) -> Option<&[T; N]>
Return an array reference to the first N
items in the slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[10, 40]), u.first_chunk::<2>());
let v: &[i32] = &[10];
assert_eq!(None, v.first_chunk::<2>());
let w: &[i32] = &[];
assert_eq!(Some(&[]), w.first_chunk::<0>());
1.77.0 · sourcepub fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>
pub fn first_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>
Return a mutable array reference to the first N
items in the slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &mut [0, 1, 2];
if let Some(first) = x.first_chunk_mut::<2>() {
first[0] = 5;
first[1] = 4;
}
assert_eq!(x, &[5, 4, 2]);
assert_eq!(None, x.first_chunk_mut::<4>());
1.77.0 · sourcepub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>
pub fn split_first_chunk<const N: usize>(&self) -> Option<(&[T; N], &[T])>
Return an array reference to the first N
items in the slice and the remaining slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &[0, 1, 2];
if let Some((first, elements)) = x.split_first_chunk::<2>() {
assert_eq!(first, &[0, 1]);
assert_eq!(elements, &[2]);
}
assert_eq!(None, x.split_first_chunk::<4>());
1.77.0 · sourcepub fn split_first_chunk_mut<const N: usize>(
&mut self,
) -> Option<(&mut [T; N], &mut [T])>
pub fn split_first_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T; N], &mut [T])>
Return a mutable array reference to the first N
items in the slice and the remaining
slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &mut [0, 1, 2];
if let Some((first, elements)) = x.split_first_chunk_mut::<2>() {
first[0] = 3;
first[1] = 4;
elements[0] = 5;
}
assert_eq!(x, &[3, 4, 5]);
assert_eq!(None, x.split_first_chunk_mut::<4>());
1.77.0 · sourcepub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>
pub fn split_last_chunk<const N: usize>(&self) -> Option<(&[T], &[T; N])>
Return an array reference to the last N
items in the slice and the remaining slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &[0, 1, 2];
if let Some((elements, last)) = x.split_last_chunk::<2>() {
assert_eq!(elements, &[0]);
assert_eq!(last, &[1, 2]);
}
assert_eq!(None, x.split_last_chunk::<4>());
1.77.0 · sourcepub fn split_last_chunk_mut<const N: usize>(
&mut self,
) -> Option<(&mut [T], &mut [T; N])>
pub fn split_last_chunk_mut<const N: usize>( &mut self, ) -> Option<(&mut [T], &mut [T; N])>
Return a mutable array reference to the last N
items in the slice and the remaining
slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &mut [0, 1, 2];
if let Some((elements, last)) = x.split_last_chunk_mut::<2>() {
last[0] = 3;
last[1] = 4;
elements[0] = 5;
}
assert_eq!(x, &[5, 3, 4]);
assert_eq!(None, x.split_last_chunk_mut::<4>());
1.77.0 · sourcepub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>
pub fn last_chunk<const N: usize>(&self) -> Option<&[T; N]>
Return an array reference to the last N
items in the slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let u = [10, 40, 30];
assert_eq!(Some(&[40, 30]), u.last_chunk::<2>());
let v: &[i32] = &[10];
assert_eq!(None, v.last_chunk::<2>());
let w: &[i32] = &[];
assert_eq!(Some(&[]), w.last_chunk::<0>());
1.77.0 · sourcepub fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>
pub fn last_chunk_mut<const N: usize>(&mut self) -> Option<&mut [T; N]>
Return a mutable array reference to the last N
items in the slice.
If the slice is not at least N
in length, this will return None
.
§Examples
let x = &mut [0, 1, 2];
if let Some(last) = x.last_chunk_mut::<2>() {
last[0] = 10;
last[1] = 20;
}
assert_eq!(x, &[0, 10, 20]);
assert_eq!(None, x.last_chunk_mut::<4>());
1.0.0 · sourcepub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
§Examples
let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));
1.0.0 · sourcepub fn get_mut<I>(
&mut self,
index: I,
) -> Option<&mut <I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
pub fn get_mut<I>(
&mut self,
index: I,
) -> Option<&mut <I as SliceIndex<[T]>>::Output>where
I: SliceIndex<[T]>,
1.0.0 · sourcepub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked<I>(
&self,
index: I,
) -> &<I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get
.
§Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
You can think of this like .get(index).unwrap_unchecked()
. It’s UB
to call .get_unchecked(len)
, even if you immediately convert to a
pointer. And it’s UB to call .get_unchecked(..len + 1)
,
.get_unchecked(..=len)
, or similar.
§Examples
let x = &[1, 2, 4];
unsafe {
assert_eq!(x.get_unchecked(1), &2);
}
1.0.0 · sourcepub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I,
) -> &mut <I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked_mut<I>(
&mut self,
index: I,
) -> &mut <I as SliceIndex<[T]>>::Outputwhere
I: SliceIndex<[T]>,
Returns a mutable reference to an element or subslice, without doing bounds checking.
For a safe alternative see get_mut
.
§Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
You can think of this like .get_mut(index).unwrap_unchecked()
. It’s
UB to call .get_unchecked_mut(len)
, even if you immediately convert
to a pointer. And it’s UB to call .get_unchecked_mut(..len + 1)
,
.get_unchecked_mut(..=len)
, or similar.
§Examples
let x = &mut [1, 2, 4];
unsafe {
let elem = x.get_unchecked_mut(1);
*elem = 13;
}
assert_eq!(x, &[1, 13, 4]);
1.0.0 · sourcepub fn as_ptr(&self) -> *const T
pub fn as_ptr(&self) -> *const T
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
The caller must also ensure that the memory the pointer (non-transitively) points to
is never written to (except inside an UnsafeCell
) using this pointer or any pointer
derived from it. If you need to mutate the contents of the slice, use as_mut_ptr
.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
§Examples
let x = &[1, 2, 4];
let x_ptr = x.as_ptr();
unsafe {
for i in 0..x.len() {
assert_eq!(x.get_unchecked(i), &*x_ptr.add(i));
}
}
1.0.0 · sourcepub fn as_mut_ptr(&mut self) -> *mut T
pub fn as_mut_ptr(&mut self) -> *mut T
Returns an unsafe mutable pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
§Examples
let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();
unsafe {
for i in 0..x.len() {
*x_ptr.add(i) += 2;
}
}
assert_eq!(x, &[3, 4, 6]);
1.48.0 · sourcepub fn as_ptr_range(&self) -> Range<*const T>
pub fn as_ptr_range(&self) -> Range<*const T>
Returns the two raw pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_ptr
for warnings on using these pointers. The end pointer
requires extra caution, as it does not point to a valid element in the
slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
It can also be useful to check if a pointer to an element refers to an element of this slice:
let a = [1, 2, 3];
let x = &a[1] as *const _;
let y = &5 as *const _;
assert!(a.as_ptr_range().contains(&x));
assert!(!a.as_ptr_range().contains(&y));
1.48.0 · sourcepub fn as_mut_ptr_range(&mut self) -> Range<*mut T>
pub fn as_mut_ptr_range(&mut self) -> Range<*mut T>
Returns the two unsafe mutable pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_mut_ptr
for warnings on using these pointers. The end
pointer requires extra caution, as it does not point to a valid element
in the slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
1.0.0 · sourcepub fn swap(&mut self, a: usize, b: usize)
pub fn swap(&mut self, a: usize, b: usize)
Swaps two elements in the slice.
If a
equals to b
, it’s guaranteed that elements won’t change value.
§Arguments
- a - The index of the first element
- b - The index of the second element
§Panics
Panics if a
or b
are out of bounds.
§Examples
let mut v = ["a", "b", "c", "d", "e"];
v.swap(2, 4);
assert!(v == ["a", "b", "e", "d", "c"]);
sourcepub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)
🔬This is a nightly-only experimental API. (slice_swap_unchecked
)
pub unsafe fn swap_unchecked(&mut self, a: usize, b: usize)
slice_swap_unchecked
)Swaps two elements in the slice, without doing bounds checking.
For a safe alternative see swap
.
§Arguments
- a - The index of the first element
- b - The index of the second element
§Safety
Calling this method with an out-of-bounds index is undefined behavior.
The caller has to ensure that a < self.len()
and b < self.len()
.
§Examples
#![feature(slice_swap_unchecked)]
let mut v = ["a", "b", "c", "d"];
// SAFETY: we know that 1 and 3 are both indices of the slice
unsafe { v.swap_unchecked(1, 3) };
assert!(v == ["a", "d", "c", "b"]);
1.0.0 · sourcepub fn reverse(&mut self)
pub fn reverse(&mut self)
Reverses the order of elements in the slice, in place.
§Examples
let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);
1.0.0 · sourcepub fn iter(&self) -> Iter<'_, T>
pub fn iter(&self) -> Iter<'_, T>
Returns an iterator over the slice.
The iterator yields all items from start to end.
§Examples
let x = &[1, 2, 4];
let mut iterator = x.iter();
assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);
1.0.0 · sourcepub fn iter_mut(&mut self) -> IterMut<'_, T>
pub fn iter_mut(&mut self) -> IterMut<'_, T>
Returns an iterator that allows modifying each value.
The iterator yields all items from start to end.
§Examples
let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
*elem += 2;
}
assert_eq!(x, &[3, 4, 6]);
1.0.0 · sourcepub fn windows(&self, size: usize) -> Windows<'_, T>
pub fn windows(&self, size: usize) -> Windows<'_, T>
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
§Panics
Panics if size
is 0.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.windows(3);
assert_eq!(iter.next().unwrap(), &['l', 'o', 'r']);
assert_eq!(iter.next().unwrap(), &['o', 'r', 'e']);
assert_eq!(iter.next().unwrap(), &['r', 'e', 'm']);
assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());
There’s no windows_mut
, as that existing would let safe code violate the
“only one &mut
at a time to the same thing” rule. However, you can sometimes
use Cell::as_slice_of_cells
in
conjunction with windows
to accomplish something similar:
use std::cell::Cell;
let mut array = ['R', 'u', 's', 't', ' ', '2', '0', '1', '5'];
let slice = &mut array[..];
let slice_of_cells: &[Cell<char>] = Cell::from_mut(slice).as_slice_of_cells();
for w in slice_of_cells.windows(3) {
Cell::swap(&w[0], &w[2]);
}
assert_eq!(array, ['s', 't', ' ', '2', '0', '1', '5', 'u', 'R']);
1.0.0 · sourcepub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
pub fn chunks(&self, chunk_size: usize) -> Chunks<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See chunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and rchunks
for the same iterator but starting at the end of the
slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());
1.0.0 · sourcepub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>
pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does not divide the
length of the slice, then the last chunk will not have length chunk_size
.
See chunks_exact_mut
for a variant of this iterator that returns chunks of always
exactly chunk_size
elements, and rchunks_mut
for the same iterator but starting at
the end of the slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.chunks_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);
1.31.0 · sourcepub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
pub fn chunks_exact(&self, chunk_size: usize) -> ChunksExact<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See chunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact
for the same iterator but starting at the end of the slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks_exact(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
1.31.0 · sourcepub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>
pub fn chunks_exact_mut(&mut self, chunk_size: usize) -> ChunksExactMut<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does not divide the
length of the slice, then the last up to chunk_size-1
elements will be omitted and can be
retrieved from the into_remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks_mut
.
See chunks_mut
for a variant of this iterator that also returns the remainder as a
smaller chunk, and rchunks_exact_mut
for the same iterator but starting at the end of
the slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.chunks_exact_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);
sourcepub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub unsafe fn as_chunks_unchecked<const N: usize>(&self) -> &[[T; N]]
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
assuming that there’s no remainder.
§Safety
This may only be called when
- The slice splits exactly into
N
-element chunks (akaself.len() % N == 0
). N != 0
.
§Examples
#![feature(slice_as_chunks)]
let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &[[char; 1]] =
// SAFETY: 1-element chunks never have remainder
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &[[char; 3]] =
// SAFETY: The slice length (6) is a multiple of 3
unsafe { slice.as_chunks_unchecked() };
assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]);
// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
sourcepub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub fn as_chunks<const N: usize>(&self) -> (&[[T; N]], &[T])
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N
.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (chunks, remainder) = slice.as_chunks();
assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]);
assert_eq!(remainder, &['m']);
If you expect the slice to be an exact multiple, you can combine
let
-else
with an empty slice pattern:
#![feature(slice_as_chunks)]
let slice = ['R', 'u', 's', 't'];
let (chunks, []) = slice.as_chunks::<2>() else {
panic!("slice didn't have even length")
};
assert_eq!(chunks, &[['R', 'u'], ['s', 't']]);
sourcepub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub fn as_rchunks<const N: usize>(&self) -> (&[T], &[[T; N]])
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N
.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(slice_as_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let (remainder, chunks) = slice.as_rchunks();
assert_eq!(remainder, &['l']);
assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
sourcepub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>
🔬This is a nightly-only experimental API. (array_chunks
)
pub fn array_chunks<const N: usize>(&self) -> ArrayChunks<'_, T, N>
array_chunks
)Returns an iterator over N
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are array references and do not overlap. If N
does not divide the
length of the slice, then the last up to N-1
elements will be omitted and can be
retrieved from the remainder
function of the iterator.
This method is the const generic equivalent of chunks_exact
.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(array_chunks)]
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.array_chunks();
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['m']);
sourcepub unsafe fn as_chunks_unchecked_mut<const N: usize>(
&mut self,
) -> &mut [[T; N]]
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub unsafe fn as_chunks_unchecked_mut<const N: usize>( &mut self, ) -> &mut [[T; N]]
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
assuming that there’s no remainder.
§Safety
This may only be called when
- The slice splits exactly into
N
-element chunks (akaself.len() % N == 0
). N != 0
.
§Examples
#![feature(slice_as_chunks)]
let slice: &mut [char] = &mut ['l', 'o', 'r', 'e', 'm', '!'];
let chunks: &mut [[char; 1]] =
// SAFETY: 1-element chunks never have remainder
unsafe { slice.as_chunks_unchecked_mut() };
chunks[0] = ['L'];
assert_eq!(chunks, &[['L'], ['o'], ['r'], ['e'], ['m'], ['!']]);
let chunks: &mut [[char; 3]] =
// SAFETY: The slice length (6) is a multiple of 3
unsafe { slice.as_chunks_unchecked_mut() };
chunks[1] = ['a', 'x', '?'];
assert_eq!(slice, &['L', 'o', 'r', 'a', 'x', '?']);
// These would be unsound:
// let chunks: &[[_; 5]] = slice.as_chunks_unchecked_mut() // The slice length is not a multiple of 5
// let chunks: &[[_; 0]] = slice.as_chunks_unchecked_mut() // Zero-length chunks are never allowed
sourcepub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub fn as_chunks_mut<const N: usize>(&mut self) -> (&mut [[T; N]], &mut [T])
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N
.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
let (chunks, remainder) = v.as_chunks_mut();
remainder[0] = 9;
for chunk in chunks {
*chunk = [count; 2];
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 9]);
sourcepub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])
🔬This is a nightly-only experimental API. (slice_as_chunks
)
pub fn as_rchunks_mut<const N: usize>(&mut self) -> (&mut [T], &mut [[T; N]])
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N
.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(slice_as_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
let (remainder, chunks) = v.as_rchunks_mut();
remainder[0] = 9;
for chunk in chunks {
*chunk = [count; 2];
count += 1;
}
assert_eq!(v, &[9, 1, 1, 2, 2]);
sourcepub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>
🔬This is a nightly-only experimental API. (array_chunks
)
pub fn array_chunks_mut<const N: usize>(&mut self) -> ArrayChunksMut<'_, T, N>
array_chunks
)Returns an iterator over N
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are mutable array references and do not overlap. If N
does not divide
the length of the slice, then the last up to N-1
elements will be omitted and
can be retrieved from the into_remainder
function of the iterator.
This method is the const generic equivalent of chunks_exact_mut
.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(array_chunks)]
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.array_chunks_mut() {
*chunk = [count; 2];
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);
sourcepub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
🔬This is a nightly-only experimental API. (array_windows
)
pub fn array_windows<const N: usize>(&self) -> ArrayWindows<'_, T, N>
array_windows
)Returns an iterator over overlapping windows of N
elements of a slice,
starting at the beginning of the slice.
This is the const generic equivalent of windows
.
If N
is greater than the size of the slice, it will return no windows.
§Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
§Examples
#![feature(array_windows)]
let slice = [0, 1, 2, 3];
let mut iter = slice.array_windows();
assert_eq!(iter.next().unwrap(), &[0, 1]);
assert_eq!(iter.next().unwrap(), &[1, 2]);
assert_eq!(iter.next().unwrap(), &[2, 3]);
assert!(iter.next().is_none());
1.31.0 · sourcepub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
pub fn rchunks(&self, chunk_size: usize) -> RChunks<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See rchunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and chunks
for the same iterator but starting at the beginning
of the slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert_eq!(iter.next().unwrap(), &['l']);
assert!(iter.next().is_none());
1.31.0 · sourcepub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>
pub fn rchunks_mut(&mut self, chunk_size: usize) -> RChunksMut<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does not divide the
length of the slice, then the last chunk will not have length chunk_size
.
See rchunks_exact_mut
for a variant of this iterator that returns chunks of always
exactly chunk_size
elements, and chunks_mut
for the same iterator but starting at the
beginning of the slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.rchunks_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[3, 2, 2, 1, 1]);
1.31.0 · sourcepub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
pub fn rchunks_exact(&self, chunk_size: usize) -> RChunksExact<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
end of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of rchunks
.
See rchunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact
for the same iterator but starting at the beginning of the
slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.rchunks_exact(2);
assert_eq!(iter.next().unwrap(), &['e', 'm']);
assert_eq!(iter.next().unwrap(), &['o', 'r']);
assert!(iter.next().is_none());
assert_eq!(iter.remainder(), &['l']);
1.31.0 · sourcepub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>
pub fn rchunks_exact_mut(&mut self, chunk_size: usize) -> RChunksExactMut<'_, T>
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are mutable slices, and do not overlap. If chunk_size
does not divide the
length of the slice, then the last up to chunk_size-1
elements will be omitted and can be
retrieved from the into_remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks_mut
.
See rchunks_mut
for a variant of this iterator that also returns the remainder as a
smaller chunk, and chunks_exact_mut
for the same iterator but starting at the beginning
of the slice.
§Panics
Panics if chunk_size
is 0.
§Examples
let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;
for chunk in v.rchunks_exact_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[0, 2, 2, 1, 1]);
1.77.0 · sourcepub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
pub fn chunk_by<F>(&self, pred: F) -> ChunkBy<'_, T, F>
Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
The predicate is called for every pair of consecutive elements,
meaning that it is called on slice[0]
and slice[1]
,
followed by slice[1]
and slice[2]
, and so on.
§Examples
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.chunk_by(|a, b| a == b);
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);
This method can be used to extract the sorted subslices:
let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4];
let mut iter = slice.chunk_by(|a, b| a <= b);
assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3][..]));
assert_eq!(iter.next(), Some(&[2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.77.0 · sourcepub fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
pub fn chunk_by_mut<F>(&mut self, pred: F) -> ChunkByMut<'_, T, F>
Returns an iterator over the slice producing non-overlapping mutable runs of elements using the predicate to separate them.
The predicate is called for every pair of consecutive elements,
meaning that it is called on slice[0]
and slice[1]
,
followed by slice[1]
and slice[2]
, and so on.
§Examples
let slice = &mut [1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.chunk_by_mut(|a, b| a == b);
assert_eq!(iter.next(), Some(&mut [1, 1, 1][..]));
assert_eq!(iter.next(), Some(&mut [3, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 2, 2][..]));
assert_eq!(iter.next(), None);
This method can be used to extract the sorted subslices:
let slice = &mut [1, 1, 2, 3, 2, 3, 2, 3, 4];
let mut iter = slice.chunk_by_mut(|a, b| a <= b);
assert_eq!(iter.next(), Some(&mut [1, 1, 2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3][..]));
assert_eq!(iter.next(), Some(&mut [2, 3, 4][..]));
assert_eq!(iter.next(), None);
1.0.0 · sourcepub fn split_at(&self, mid: usize) -> (&[T], &[T])
pub fn split_at(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
§Panics
Panics if mid > len
. For a non-panicking alternative see
split_at_checked
.
§Examples
let v = [1, 2, 3, 4, 5, 6];
{
let (left, right) = v.split_at(0);
assert_eq!(left, []);
assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}
{
let (left, right) = v.split_at(2);
assert_eq!(left, [1, 2]);
assert_eq!(right, [3, 4, 5, 6]);
}
{
let (left, right) = v.split_at(6);
assert_eq!(left, [1, 2, 3, 4, 5, 6]);
assert_eq!(right, []);
}
1.0.0 · sourcepub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])
Divides one mutable slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
§Panics
Panics if mid > len
. For a non-panicking alternative see
split_at_mut_checked
.
§Examples
let mut v = [1, 0, 3, 0, 5, 6];
let (left, right) = v.split_at_mut(2);
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1.79.0 · sourcepub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
pub unsafe fn split_at_unchecked(&self, mid: usize) -> (&[T], &[T])
Divides one slice into two at an index, without doing bounds checking.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
For a safe alternative see split_at
.
§Safety
Calling this method with an out-of-bounds index is undefined behavior
even if the resulting reference is not used. The caller has to ensure that
0 <= mid <= self.len()
.
§Examples
let v = [1, 2, 3, 4, 5, 6];
unsafe {
let (left, right) = v.split_at_unchecked(0);
assert_eq!(left, []);
assert_eq!(right, [1, 2, 3, 4, 5, 6]);
}
unsafe {
let (left, right) = v.split_at_unchecked(2);
assert_eq!(left, [1, 2]);
assert_eq!(right, [3, 4, 5, 6]);
}
unsafe {
let (left, right) = v.split_at_unchecked(6);
assert_eq!(left, [1, 2, 3, 4, 5, 6]);
assert_eq!(right, []);
}
1.79.0 · sourcepub unsafe fn split_at_mut_unchecked(
&mut self,
mid: usize,
) -> (&mut [T], &mut [T])
pub unsafe fn split_at_mut_unchecked( &mut self, mid: usize, ) -> (&mut [T], &mut [T])
Divides one mutable slice into two at an index, without doing bounds checking.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
For a safe alternative see split_at_mut
.
§Safety
Calling this method with an out-of-bounds index is undefined behavior
even if the resulting reference is not used. The caller has to ensure that
0 <= mid <= self.len()
.
§Examples
let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
unsafe {
let (left, right) = v.split_at_mut_unchecked(2);
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
1.80.0 · sourcepub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>
pub fn split_at_checked(&self, mid: usize) -> Option<(&[T], &[T])>
Divides one slice into two at an index, returning None
if the slice is
too short.
If mid ≤ len
returns a pair of slices where the first will contain all
indices from [0, mid)
(excluding the index mid
itself) and the
second will contain all indices from [mid, len)
(excluding the index
len
itself).
Otherwise, if mid > len
, returns None
.
§Examples
let v = [1, -2, 3, -4, 5, -6];
{
let (left, right) = v.split_at_checked(0).unwrap();
assert_eq!(left, []);
assert_eq!(right, [1, -2, 3, -4, 5, -6]);
}
{
let (left, right) = v.split_at_checked(2).unwrap();
assert_eq!(left, [1, -2]);
assert_eq!(right, [3, -4, 5, -6]);
}
{
let (left, right) = v.split_at_checked(6).unwrap();
assert_eq!(left, [1, -2, 3, -4, 5, -6]);
assert_eq!(right, []);
}
assert_eq!(None, v.split_at_checked(7));
1.80.0 · sourcepub fn split_at_mut_checked(
&mut self,
mid: usize,
) -> Option<(&mut [T], &mut [T])>
pub fn split_at_mut_checked( &mut self, mid: usize, ) -> Option<(&mut [T], &mut [T])>
Divides one mutable slice into two at an index, returning None
if the
slice is too short.
If mid ≤ len
returns a pair of slices where the first will contain all
indices from [0, mid)
(excluding the index mid
itself) and the
second will contain all indices from [mid, len)
(excluding the index
len
itself).
Otherwise, if mid > len
, returns None
.
§Examples
let mut v = [1, 0, 3, 0, 5, 6];
if let Some((left, right)) = v.split_at_mut_checked(2) {
assert_eq!(left, [1, 0]);
assert_eq!(right, [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
}
assert_eq!(v, [1, 2, 3, 4, 5, 6]);
assert_eq!(None, v.split_at_mut_checked(7));
1.0.0 · sourcepub fn split<F>(&self, pred: F) -> Split<'_, T, F>
pub fn split<F>(&self, pred: F) -> Split<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
1.0.0 · sourcepub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<'_, T, F>
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is not contained in the subslices.
§Examples
let mut v = [10, 40, 30, 20, 60, 50];
for group in v.split_mut(|num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);
1.51.0 · sourcepub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred
. The matched element is contained in the end of the previous
subslice as a terminator.
§Examples
let slice = [10, 40, 33, 20];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());
If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.
let slice = [3, 10, 40, 33];
let mut iter = slice.split_inclusive(|num| num % 3 == 0);
assert_eq!(iter.next().unwrap(), &[3]);
assert_eq!(iter.next().unwrap(), &[10, 40, 33]);
assert!(iter.next().is_none());
1.51.0 · sourcepub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
pub fn split_inclusive_mut<F>(&mut self, pred: F) -> SplitInclusiveMut<'_, T, F>
Returns an iterator over mutable subslices separated by elements that
match pred
. The matched element is contained in the previous
subslice as a terminator.
§Examples
let mut v = [10, 40, 30, 20, 60, 50];
for group in v.split_inclusive_mut(|num| *num % 3 == 0) {
let terminator_idx = group.len()-1;
group[terminator_idx] = 1;
}
assert_eq!(v, [10, 40, 1, 20, 1, 1]);
1.27.0 · sourcepub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
pub fn rsplit<F>(&self, pred: F) -> RSplit<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
§Examples
let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);
assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);
1.27.0 · sourcepub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<'_, T, F>
Returns an iterator over mutable subslices separated by elements that
match pred
, starting at the end of the slice and working
backwards. The matched element is not contained in the subslices.
§Examples
let mut v = [100, 400, 300, 200, 600, 500];
let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
count += 1;
group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);
1.0.0 · sourcepub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
Print the slice split once by numbers divisible by 3 (i.e., [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50];
for group in v.splitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}
1.0.0 · sourcepub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<'_, T, F>
Returns an iterator over mutable subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
let mut v = [10, 40, 30, 20, 60, 50];
for group in v.splitn_mut(2, |num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);
1.0.0 · sourcepub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e., [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50];
for group in v.rsplitn(2, |num| *num % 3 == 0) {
println!("{group:?}");
}
1.0.0 · sourcepub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<'_, T, F>
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
§Examples
let mut s = [10, 40, 30, 20, 60, 50];
for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);
sourcepub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
🔬This is a nightly-only experimental API. (slice_split_once
)
pub fn split_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
slice_split_once
)Splits the slice on the first element that matches the specified predicate.
If any matching elements are present in the slice, returns the prefix
before the match and suffix after. The matching element itself is not
included. If no elements match, returns None
.
§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.split_once(|&x| x == 2), Some((
&[1][..],
&[3, 2, 4][..]
)));
assert_eq!(s.split_once(|&x| x == 0), None);
sourcepub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
🔬This is a nightly-only experimental API. (slice_split_once
)
pub fn rsplit_once<F>(&self, pred: F) -> Option<(&[T], &[T])>
slice_split_once
)Splits the slice on the last element that matches the specified predicate.
If any matching elements are present in the slice, returns the prefix
before the match and suffix after. The matching element itself is not
included. If no elements match, returns None
.
§Examples
#![feature(slice_split_once)]
let s = [1, 2, 3, 2, 4];
assert_eq!(s.rsplit_once(|&x| x == 2), Some((
&[1, 2, 3][..],
&[4][..]
)));
assert_eq!(s.rsplit_once(|&x| x == 0), None);
1.0.0 · sourcepub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
pub fn contains(&self, x: &T) -> boolwhere
T: PartialEq,
Returns true
if the slice contains an element with the given value.
This operation is O(n).
Note that if you have a sorted slice, binary_search
may be faster.
§Examples
let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));
If you do not have a &T
, but some other value that you can compare
with one (for example, String
implements PartialEq<str>
), you can
use iter().any
:
let v = [String::from("hello"), String::from("world")]; // slice of `String`
assert!(v.iter().any(|e| e == "hello")); // search with `&str`
assert!(!v.iter().any(|e| e == "hi"));
1.0.0 · sourcepub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
pub fn starts_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
Returns true
if needle
is a prefix of the slice or equal to the slice.
§Examples
let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(v.starts_with(&v));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));
1.0.0 · sourcepub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
pub fn ends_with(&self, needle: &[T]) -> boolwhere
T: PartialEq,
Returns true
if needle
is a suffix of the slice or equal to the slice.
§Examples
let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(v.ends_with(&v));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));
1.51.0 · sourcepub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]>
Returns a subslice with the prefix removed.
If the slice starts with prefix
, returns the subslice after the prefix, wrapped in Some
.
If prefix
is empty, simply returns the original slice. If prefix
is equal to the
original slice, returns an empty slice.
If the slice does not start with prefix
, returns None
.
§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..]));
assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..]));
assert_eq!(v.strip_prefix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_prefix(&[50]), None);
assert_eq!(v.strip_prefix(&[10, 50]), None);
let prefix : &str = "he";
assert_eq!(b"hello".strip_prefix(prefix.as_bytes()),
Some(b"llo".as_ref()));
1.51.0 · sourcepub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]>
Returns a subslice with the suffix removed.
If the slice ends with suffix
, returns the subslice before the suffix, wrapped in Some
.
If suffix
is empty, simply returns the original slice. If suffix
is equal to the
original slice, returns an empty slice.
If the slice does not end with suffix
, returns None
.
§Examples
let v = &[10, 40, 30];
assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..]));
assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..]));
assert_eq!(v.strip_suffix(&[10, 40, 30]), Some(&[][..]));
assert_eq!(v.strip_suffix(&[50]), None);
assert_eq!(v.strip_suffix(&[50, 30]), None);
1.0.0 · sourcepub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
pub fn binary_search(&self, x: &T) -> Result<usize, usize>where
T: Ord,
Binary searches this slice for a given element. If the slice is not sorted, the returned result is unspecified and meaningless.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search_by
, binary_search_by_key
, and partition_point
.
§Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
assert_eq!(s.binary_search(&13), Ok(9));
assert_eq!(s.binary_search(&4), Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1..=4) => true, _ => false, });
If you want to find that whole range of matching items, rather than
an arbitrary matching one, that can be done using partition_point
:
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let low = s.partition_point(|x| x < &1);
assert_eq!(low, 1);
let high = s.partition_point(|x| x <= &1);
assert_eq!(high, 5);
let r = s.binary_search(&1);
assert!((low..high).contains(&r.unwrap()));
assert!(s[..low].iter().all(|&x| x < 1));
assert!(s[low..high].iter().all(|&x| x == 1));
assert!(s[high..].iter().all(|&x| x > 1));
// For something not found, the "range" of equal items is empty
assert_eq!(s.partition_point(|x| x < &11), 9);
assert_eq!(s.partition_point(|x| x <= &11), 9);
assert_eq!(s.binary_search(&11), Err(9));
If you want to insert an item to a sorted vector, while maintaining
sort order, consider using partition_point
:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
// If `num` is unique, `s.partition_point(|&x| x < num)` (with `<`) is equivalent to
// `s.binary_search(&num).unwrap_or_else(|x| x)`, but using `<=` will allow `insert`
// to shift less elements.
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
1.0.0 · sourcepub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize>
Binary searches this slice with a comparator function.
The comparator function should return an order code that indicates
whether its argument is Less
, Equal
or Greater
the desired
target.
If the slice is not sorted or if the comparator function does not
implement an order consistent with the sort order of the underlying
slice, the returned result is unspecified and meaningless.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search
, binary_search_by_key
, and partition_point
.
§Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1..=4) => true, _ => false, });
1.10.0 · sourcepub fn binary_search_by_key<'a, B, F>(
&'a self,
b: &B,
f: F,
) -> Result<usize, usize>
pub fn binary_search_by_key<'a, B, F>( &'a self, b: &B, f: F, ) -> Result<usize, usize>
Binary searches this slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If the slice is not sorted by the key, the returned result is
unspecified and meaningless.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search
, binary_search_by
, and partition_point
.
§Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
(1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)];
assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a, b)| b);
assert!(match r { Ok(1..=4) => true, _ => false, });
1.20.0 · sourcepub fn sort_unstable(&mut self)where
T: Ord,
pub fn sort_unstable(&mut self)where
T: Ord,
Sorts the slice without preserving the initial order of equal elements.
This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.
If T: Ord
does not implement a total order the resulting order is unspecified. All
original elements will remain in the slice and any possible modifications via interior
mutability are observed in the input. Same is true if T: Ord
panics.
§Current implementation
The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).
It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.
If T: Ord
does not implement a total order, the implementation may panic.
§Examples
let mut v = [-5, 4, 1, -3, 2];
v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);
1.20.0 · sourcepub fn sort_unstable_by<F>(&mut self, compare: F)
pub fn sort_unstable_by<F>(&mut self, compare: F)
Sorts the slice with a comparator function, without preserving the initial order of equal elements.
This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.
The comparator function should define a total ordering for the elements in the slice. If the ordering is not total, the order of the elements is unspecified.
If the comparator function does not implement a total order the resulting order is
unspecified. All original elements will remain in the slice and any possible modifications
via interior mutability are observed in the input. Same is true if the comparator function
panics. A total order (for all a
, b
and c
):
- total and antisymmetric: exactly one of
a < b
,a == b
ora > b
is true, and - transitive,
a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
For example, while f64
doesn’t implement Ord
because NaN != NaN
, we can use
partial_cmp
as our sort function when we know the slice doesn’t contain a NaN
.
let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
§Current implementation
The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).
It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.
If T: Ord
does not implement a total order, the implementation may panic.
§Examples
let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);
// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);
1.20.0 · sourcepub fn sort_unstable_by_key<K, F>(&mut self, f: F)
pub fn sort_unstable_by_key<K, F>(&mut self, f: F)
Sorts the slice with a key extraction function, without preserving the initial order of equal elements.
This sort is unstable (i.e., may reorder equal elements), in-place (i.e., does not allocate), and O(n * log(n)) worst-case.
If K: Ord
does not implement a total order the resulting order is unspecified.
All original elements will remain in the slice and any possible modifications via interior
mutability are observed in the input. Same is true if K: Ord
panics.
§Current implementation
The current implementation is based on ipnsort by Lukas Bergdoll and Orson Peters, which combines the fast average case of quicksort with the fast worst case of heapsort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).
It is typically faster than stable sorting, except in a few special cases, e.g., when the slice is partially sorted.
If K: Ord
does not implement a total order, the implementation may panic.
§Examples
let mut v = [-5i32, 4, 1, -3, 2];
v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);
1.49.0 · sourcepub fn select_nth_unstable(
&mut self,
index: usize,
) -> (&mut [T], &mut T, &mut [T])where
T: Ord,
pub fn select_nth_unstable(
&mut self,
index: usize,
) -> (&mut [T], &mut T, &mut [T])where
T: Ord,
Reorder the slice such that the element at index
after the reordering is at its final
sorted position.
This reordering has the additional property that any value at position i < index
will be
less than or equal to any value at a position j > index
. Additionally, this reordering is
unstable (i.e. any number of equal elements may end up at position index
), in-place (i.e.
does not allocate), and runs in O(n) time. This function is also known as “kth element”
in other libraries.
It returns a triplet of the following from the reordered slice: the subslice prior to
index
, the element at index
, and the subslice after index
; accordingly, the values in
those two subslices will respectively all be less-than-or-equal-to and
greater-than-or-equal-to the value of the element at index
.
§Current implementation
The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll
and Orson Peters, which is also the basis for sort_unstable
. The fallback algorithm is
Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime
for all inputs.
It is typically faster than stable sorting, except in a few special cases, e.g., when the
slice is nearly fully sorted, where slice::sort
may be faster.
§Panics
Panics when index >= len()
, meaning it always panics on empty slices.
§Examples
let mut v = [-5i32, 4, 2, -3, 1];
// Find the items less than or equal to the median, the median, and greater than or equal to
// the median.
let (lesser, median, greater) = v.select_nth_unstable(2);
assert!(lesser == [-3, -5] || lesser == [-5, -3]);
assert_eq!(median, &mut 1);
assert!(greater == [4, 2] || greater == [2, 4]);
// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [-3, -5, 1, 2, 4] ||
v == [-5, -3, 1, 2, 4] ||
v == [-3, -5, 1, 4, 2] ||
v == [-5, -3, 1, 4, 2]);
1.49.0 · sourcepub fn select_nth_unstable_by<F>(
&mut self,
index: usize,
compare: F,
) -> (&mut [T], &mut T, &mut [T])
pub fn select_nth_unstable_by<F>( &mut self, index: usize, compare: F, ) -> (&mut [T], &mut T, &mut [T])
Reorder the slice with a comparator function such that the element at index
after the
reordering is at its final sorted position.
This reordering has the additional property that any value at position i < index
will be
less than or equal to any value at a position j > index
using the comparator function.
Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
position index
), in-place (i.e. does not allocate), and runs in O(n) time. This
function is also known as “kth element” in other libraries.
It returns a triplet of the following from the slice reordered according to the provided
comparator function: the subslice prior to index
, the element at index
, and the subslice
after index
; accordingly, the values in those two subslices will respectively all be
less-than-or-equal-to and greater-than-or-equal-to the value of the element at index
.
§Current implementation
The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll
and Orson Peters, which is also the basis for sort_unstable
. The fallback algorithm is
Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime
for all inputs.
It is typically faster than stable sorting, except in a few special cases, e.g., when the
slice is nearly fully sorted, where slice::sort
may be faster.
§Panics
Panics when index >= len()
, meaning it always panics on empty slices.
§Examples
let mut v = [-5i32, 4, 2, -3, 1];
// Find the items less than or equal to the median, the median, and greater than or equal to
// the median as if the slice were sorted in descending order.
let (lesser, median, greater) = v.select_nth_unstable_by(2, |a, b| b.cmp(a));
assert!(lesser == [4, 2] || lesser == [2, 4]);
assert_eq!(median, &mut 1);
assert!(greater == [-3, -5] || greater == [-5, -3]);
// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [2, 4, 1, -5, -3] ||
v == [2, 4, 1, -3, -5] ||
v == [4, 2, 1, -5, -3] ||
v == [4, 2, 1, -3, -5]);
1.49.0 · sourcepub fn select_nth_unstable_by_key<K, F>(
&mut self,
index: usize,
f: F,
) -> (&mut [T], &mut T, &mut [T])
pub fn select_nth_unstable_by_key<K, F>( &mut self, index: usize, f: F, ) -> (&mut [T], &mut T, &mut [T])
Reorder the slice with a key extraction function such that the element at index
after the
reordering is at its final sorted position.
This reordering has the additional property that any value at position i < index
will be
less than or equal to any value at a position j > index
using the key extraction function.
Additionally, this reordering is unstable (i.e. any number of equal elements may end up at
position index
), in-place (i.e. does not allocate), and runs in O(n) time. This
function is also known as “kth element” in other libraries.
It returns a triplet of the following from the slice reordered according to the provided key
extraction function: the subslice prior to index
, the element at index
, and the subslice
after index
; accordingly, the values in those two subslices will respectively all be
less-than-or-equal-to and greater-than-or-equal-to the value of the element at index
.
§Current implementation
The current algorithm is an introselect implementation based on ipnsort by Lukas Bergdoll
and Orson Peters, which is also the basis for sort_unstable
. The fallback algorithm is
Median of Medians using Tukey’s Ninther for pivot selection, which guarantees linear runtime
for all inputs.
It is typically faster than stable sorting, except in a few special cases, e.g., when the
slice is nearly fully sorted, where slice::sort
may be faster.
§Panics
Panics when index >= len()
, meaning it always panics on empty slices.
§Examples
let mut v = [-5i32, 4, 1, -3, 2];
// Find the items less than or equal to the median, the median, and greater than or equal to
// the median as if the slice were sorted according to absolute value.
let (lesser, median, greater) = v.select_nth_unstable_by_key(2, |a| a.abs());
assert!(lesser == [1, 2] || lesser == [2, 1]);
assert_eq!(median, &mut -3);
assert!(greater == [4, -5] || greater == [-5, 4]);
// We are only guaranteed the slice will be one of the following, based on the way we sort
// about the specified index.
assert!(v == [1, 2, -3, 4, -5] ||
v == [1, 2, -3, -5, 4] ||
v == [2, 1, -3, 4, -5] ||
v == [2, 1, -3, -5, 4]);
sourcepub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])where
T: PartialEq,
🔬This is a nightly-only experimental API. (slice_partition_dedup
)
pub fn partition_dedup(&mut self) -> (&mut [T], &mut [T])where
T: PartialEq,
slice_partition_dedup
)Moves all consecutive repeated elements to the end of the slice according to the
PartialEq
trait implementation.
Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.
If the slice is sorted, the first returned slice contains no duplicates.
§Examples
#![feature(slice_partition_dedup)]
let mut slice = [1, 2, 2, 3, 3, 2, 1, 1];
let (dedup, duplicates) = slice.partition_dedup();
assert_eq!(dedup, [1, 2, 3, 2, 1]);
assert_eq!(duplicates, [2, 3, 1]);
sourcepub fn partition_dedup_by<F>(&mut self, same_bucket: F) -> (&mut [T], &mut [T])
🔬This is a nightly-only experimental API. (slice_partition_dedup
)
pub fn partition_dedup_by<F>(&mut self, same_bucket: F) -> (&mut [T], &mut [T])
slice_partition_dedup
)Moves all but the first of consecutive elements to the end of the slice satisfying a given equality relation.
Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.
The same_bucket
function is passed references to two elements from the slice and
must determine if the elements compare equal. The elements are passed in opposite order
from their order in the slice, so if same_bucket(a, b)
returns true
, a
is moved
at the end of the slice.
If the slice is sorted, the first returned slice contains no duplicates.
§Examples
#![feature(slice_partition_dedup)]
let mut slice = ["foo", "Foo", "BAZ", "Bar", "bar", "baz", "BAZ"];
let (dedup, duplicates) = slice.partition_dedup_by(|a, b| a.eq_ignore_ascii_case(b));
assert_eq!(dedup, ["foo", "BAZ", "Bar", "baz"]);
assert_eq!(duplicates, ["bar", "Foo", "BAZ"]);
sourcepub fn partition_dedup_by_key<K, F>(&mut self, key: F) -> (&mut [T], &mut [T])
🔬This is a nightly-only experimental API. (slice_partition_dedup
)
pub fn partition_dedup_by_key<K, F>(&mut self, key: F) -> (&mut [T], &mut [T])
slice_partition_dedup
)Moves all but the first of consecutive elements to the end of the slice that resolve to the same key.
Returns two slices. The first contains no consecutive repeated elements. The second contains all the duplicates in no specified order.
If the slice is sorted, the first returned slice contains no duplicates.
§Examples
#![feature(slice_partition_dedup)]
let mut slice = [10, 20, 21, 30, 30, 20, 11, 13];
let (dedup, duplicates) = slice.partition_dedup_by_key(|i| *i / 10);
assert_eq!(dedup, [10, 20, 30, 20, 11]);
assert_eq!(duplicates, [21, 30, 13]);
1.26.0 · sourcepub fn rotate_left(&mut self, mid: usize)
pub fn rotate_left(&mut self, mid: usize)
Rotates the slice in-place such that the first mid
elements of the
slice move to the end while the last self.len() - mid
elements move to
the front. After calling rotate_left
, the element previously at index
mid
will become the first element in the slice.
§Panics
This function will panic if mid
is greater than the length of the
slice. Note that mid == self.len()
does not panic and is a no-op
rotation.
§Complexity
Takes linear (in self.len()
) time.
§Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);
Rotating a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);
1.26.0 · sourcepub fn rotate_right(&mut self, k: usize)
pub fn rotate_right(&mut self, k: usize)
Rotates the slice in-place such that the first self.len() - k
elements of the slice move to the end while the last k
elements move
to the front. After calling rotate_right
, the element previously at
index self.len() - k
will become the first element in the slice.
§Panics
This function will panic if k
is greater than the length of the
slice. Note that k == self.len()
does not panic and is a no-op
rotation.
§Complexity
Takes linear (in self.len()
) time.
§Examples
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);
Rotating a subslice:
let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);
1.50.0 · sourcepub fn fill(&mut self, value: T)where
T: Clone,
pub fn fill(&mut self, value: T)where
T: Clone,
Fills self
with elements by cloning value
.
§Examples
let mut buf = vec![0; 10];
buf.fill(1);
assert_eq!(buf, vec![1; 10]);
1.51.0 · sourcepub fn fill_with<F>(&mut self, f: F)where
F: FnMut() -> T,
pub fn fill_with<F>(&mut self, f: F)where
F: FnMut() -> T,
Fills self
with elements returned by calling a closure repeatedly.
This method uses a closure to create new values. If you’d rather
Clone
a given value, use fill
. If you want to use the Default
trait to generate values, you can pass Default::default
as the
argument.
§Examples
let mut buf = vec![1; 10];
buf.fill_with(Default::default);
assert_eq!(buf, vec![0; 10]);
1.7.0 · sourcepub fn clone_from_slice(&mut self, src: &[T])where
T: Clone,
pub fn clone_from_slice(&mut self, src: &[T])where
T: Clone,
Copies the elements from src
into self
.
The length of src
must be the same as self
.
§Panics
This function will panic if the two slices have different lengths.
§Examples
Cloning two elements from a slice into another:
let src = [1, 2, 3, 4];
let mut dst = [0, 0];
// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.clone_from_slice(&src[2..]);
assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use clone_from_slice
on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5];
slice[..2].clone_from_slice(&slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5];
{
let (left, right) = slice.split_at_mut(2);
left.clone_from_slice(&right[1..]);
}
assert_eq!(slice, [4, 5, 3, 4, 5]);
1.9.0 · sourcepub fn copy_from_slice(&mut self, src: &[T])where
T: Copy,
pub fn copy_from_slice(&mut self, src: &[T])where
T: Copy,
Copies all elements from src
into self
, using a memcpy.
The length of src
must be the same as self
.
If T
does not implement Copy
, use clone_from_slice
.
§Panics
This function will panic if the two slices have different lengths.
§Examples
Copying two elements from a slice into another:
let src = [1, 2, 3, 4];
let mut dst = [0, 0];
// Because the slices have to be the same length,
// we slice the source slice from four elements
// to two. It will panic if we don't do this.
dst.copy_from_slice(&src[2..]);
assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);
Rust enforces that there can only be one mutable reference with no
immutable references to a particular piece of data in a particular
scope. Because of this, attempting to use copy_from_slice
on a
single slice will result in a compile failure:
let mut slice = [1, 2, 3, 4, 5];
slice[..2].copy_from_slice(&slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5];
{
let (left, right) = slice.split_at_mut(2);
left.copy_from_slice(&right[1..]);
}
assert_eq!(slice, [4, 5, 3, 4, 5]);
1.37.0 · sourcepub fn copy_within<R>(&mut self, src: R, dest: usize)
pub fn copy_within<R>(&mut self, src: R, dest: usize)
Copies elements from one part of the slice to another part of itself, using a memmove.
src
is the range within self
to copy from. dest
is the starting
index of the range within self
to copy to, which will have the same
length as src
. The two ranges may overlap. The ends of the two ranges
must be less than or equal to self.len()
.
§Panics
This function will panic if either range exceeds the end of the slice,
or if the end of src
is before the start.
§Examples
Copying four bytes within a slice:
let mut bytes = *b"Hello, World!";
bytes.copy_within(1..5, 8);
assert_eq!(&bytes, b"Hello, Wello!");
1.27.0 · sourcepub fn swap_with_slice(&mut self, other: &mut [T])
pub fn swap_with_slice(&mut self, other: &mut [T])
Swaps all elements in self
with those in other
.
The length of other
must be the same as self
.
§Panics
This function will panic if the two slices have different lengths.
§Example
Swapping two elements across slices:
let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];
slice1.swap_with_slice(&mut slice2[2..]);
assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);
Rust enforces that there can only be one mutable reference to a
particular piece of data in a particular scope. Because of this,
attempting to use swap_with_slice
on a single slice will result in
a compile failure:
let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!
To work around this, we can use split_at_mut
to create two distinct
mutable sub-slices from a slice:
let mut slice = [1, 2, 3, 4, 5];
{
let (left, right) = slice.split_at_mut(2);
left.swap_with_slice(&mut right[1..]);
}
assert_eq!(slice, [4, 5, 3, 1, 2]);
1.30.0 · sourcepub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])
Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
§Safety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
§Examples
Basic usage:
unsafe {
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}
1.30.0 · sourcepub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])
pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])
Transmute the mutable slice to a mutable slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle part will be as big as possible under the given alignment constraint and element size.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
§Safety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
§Examples
Basic usage:
unsafe {
let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}
sourcepub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
🔬This is a nightly-only experimental API. (portable_simd
)
pub fn as_simd<const LANES: usize>(&self) -> (&[T], &[Simd<T, LANES>], &[T])
portable_simd
)Split a slice into a prefix, a middle of aligned SIMD types, and a suffix.
This is a safe wrapper around slice::align_to
, so has the same weak
postconditions as that method. You’re only assured that
self.len() == prefix.len() + middle.len() * LANES + suffix.len()
.
Notably, all of the following are possible:
prefix.len() >= LANES
.middle.is_empty()
despiteself.len() >= 3 * LANES
.suffix.len() >= LANES
.
That said, this is a safe method, so if you’re only writing safe code, then this can at most cause incorrect logic, not unsoundness.
§Panics
This will panic if the size of the SIMD type is different from
LANES
times that of the scalar.
At the time of writing, the trait restrictions on Simd<T, LANES>
keeps
that from ever happening, as only power-of-two numbers of lanes are
supported. It’s possible that, in the future, those restrictions might
be lifted in a way that would make it possible to see panics from this
method for something like LANES == 3
.
§Examples
#![feature(portable_simd)]
use core::simd::prelude::*;
let short = &[1, 2, 3];
let (prefix, middle, suffix) = short.as_simd::<4>();
assert_eq!(middle, []); // Not enough elements for anything in the middle
// They might be split in any possible way between prefix and suffix
let it = prefix.iter().chain(suffix).copied();
assert_eq!(it.collect::<Vec<_>>(), vec![1, 2, 3]);
fn basic_simd_sum(x: &[f32]) -> f32 {
use std::ops::Add;
let (prefix, middle, suffix) = x.as_simd();
let sums = f32x4::from_array([
prefix.iter().copied().sum(),
0.0,
0.0,
suffix.iter().copied().sum(),
]);
let sums = middle.iter().copied().fold(sums, f32x4::add);
sums.reduce_sum()
}
let numbers: Vec<f32> = (1..101).map(|x| x as _).collect();
assert_eq!(basic_simd_sum(&numbers[1..99]), 4949.0);
sourcepub fn as_simd_mut<const LANES: usize>(
&mut self,
) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
🔬This is a nightly-only experimental API. (portable_simd
)
pub fn as_simd_mut<const LANES: usize>( &mut self, ) -> (&mut [T], &mut [Simd<T, LANES>], &mut [T])
portable_simd
)Split a mutable slice into a mutable prefix, a middle of aligned SIMD types, and a mutable suffix.
This is a safe wrapper around slice::align_to_mut
, so has the same weak
postconditions as that method. You’re only assured that
self.len() == prefix.len() + middle.len() * LANES + suffix.len()
.
Notably, all of the following are possible:
prefix.len() >= LANES
.middle.is_empty()
despiteself.len() >= 3 * LANES
.suffix.len() >= LANES
.
That said, this is a safe method, so if you’re only writing safe code, then this can at most cause incorrect logic, not unsoundness.
This is the mutable version of slice::as_simd
; see that for examples.
§Panics
This will panic if the size of the SIMD type is different from
LANES
times that of the scalar.
At the time of writing, the trait restrictions on Simd<T, LANES>
keeps
that from ever happening, as only power-of-two numbers of lanes are
supported. It’s possible that, in the future, those restrictions might
be lifted in a way that would make it possible to see panics from this
method for something like LANES == 3
.
sourcepub fn is_sorted(&self) -> boolwhere
T: PartialOrd,
🔬This is a nightly-only experimental API. (is_sorted
)
pub fn is_sorted(&self) -> boolwhere
T: PartialOrd,
is_sorted
)Checks if the elements of this slice are sorted.
That is, for each element a
and its following element b
, a <= b
must hold. If the
slice yields exactly zero or one element, true
is returned.
Note that if Self::Item
is only PartialOrd
, but not Ord
, the above definition
implies that this function returns false
if any two consecutive items are not
comparable.
§Examples
#![feature(is_sorted)]
let empty: [i32; 0] = [];
assert!([1, 2, 2, 9].is_sorted());
assert!(![1, 3, 2, 4].is_sorted());
assert!([0].is_sorted());
assert!(empty.is_sorted());
assert!(![0.0, 1.0, f32::NAN].is_sorted());
sourcepub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
🔬This is a nightly-only experimental API. (is_sorted
)
pub fn is_sorted_by<'a, F>(&'a self, compare: F) -> bool
is_sorted
)Checks if the elements of this slice are sorted using the given comparator function.
Instead of using PartialOrd::partial_cmp
, this function uses the given compare
function to determine whether two elements are to be considered in sorted order.
§Examples
#![feature(is_sorted)]
assert!([1, 2, 2, 9].is_sorted_by(|a, b| a <= b));
assert!(![1, 2, 2, 9].is_sorted_by(|a, b| a < b));
assert!([0].is_sorted_by(|a, b| true));
assert!([0].is_sorted_by(|a, b| false));
let empty: [i32; 0] = [];
assert!(empty.is_sorted_by(|a, b| false));
assert!(empty.is_sorted_by(|a, b| true));
sourcepub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
🔬This is a nightly-only experimental API. (is_sorted
)
pub fn is_sorted_by_key<'a, F, K>(&'a self, f: F) -> bool
is_sorted
)Checks if the elements of this slice are sorted using the given key extraction function.
Instead of comparing the slice’s elements directly, this function compares the keys of the
elements, as determined by f
. Apart from that, it’s equivalent to is_sorted
; see its
documentation for more information.
§Examples
#![feature(is_sorted)]
assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len()));
assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
1.52.0 · sourcepub fn partition_point<P>(&self, pred: P) -> usize
pub fn partition_point<P>(&self, pred: P) -> usize
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The slice is assumed to be partitioned according to the given predicate.
This means that all elements for which the predicate returns true are at the start of the slice
and all elements for which the predicate returns false are at the end.
For example, [7, 15, 3, 5, 4, 12, 6]
is partitioned under the predicate x % 2 != 0
(all odd numbers are at the start, all even at the end).
If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search
, binary_search_by
, and binary_search_by_key
.
§Examples
let v = [1, 2, 3, 3, 5, 6, 7];
let i = v.partition_point(|&x| x < 5);
assert_eq!(i, 4);
assert!(v[..i].iter().all(|&x| x < 5));
assert!(v[i..].iter().all(|&x| !(x < 5)));
If all elements of the slice match the predicate, including if the slice is empty, then the length of the slice will be returned:
let a = [2, 4, 8];
assert_eq!(a.partition_point(|x| x < &100), a.len());
let a: [i32; 0] = [];
assert_eq!(a.partition_point(|x| x < &100), 0);
If you want to insert an item to a sorted vector, while maintaining sort order:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];
let num = 42;
let idx = s.partition_point(|&x| x <= num);
s.insert(idx, num);
assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
sourcepub fn take<'a, R>(self: &mut &'a [T], range: R) -> Option<&'a [T]>where
R: OneSidedRange<usize>,
🔬This is a nightly-only experimental API. (slice_take
)
pub fn take<'a, R>(self: &mut &'a [T], range: R) -> Option<&'a [T]>where
R: OneSidedRange<usize>,
slice_take
)Removes the subslice corresponding to the given range and returns a reference to it.
Returns None
and does not modify the slice if the given
range is out of bounds.
Note that this method only accepts one-sided ranges such as
2..
or ..6
, but not 2..6
.
§Examples
Taking the first three elements of a slice:
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut first_three = slice.take(..3).unwrap();
assert_eq!(slice, &['d']);
assert_eq!(first_three, &['a', 'b', 'c']);
Taking the last two elements of a slice:
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c', 'd'];
let mut tail = slice.take(2..).unwrap();
assert_eq!(slice, &['a', 'b']);
assert_eq!(tail, &['c', 'd']);
Getting None
when range
is out of bounds:
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c', 'd'];
assert_eq!(None, slice.take(5..));
assert_eq!(None, slice.take(..5));
assert_eq!(None, slice.take(..=4));
let expected: &[char] = &['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.take(..4));
sourcepub fn take_mut<'a, R>(self: &mut &'a mut [T], range: R) -> Option<&'a mut [T]>where
R: OneSidedRange<usize>,
🔬This is a nightly-only experimental API. (slice_take
)
pub fn take_mut<'a, R>(self: &mut &'a mut [T], range: R) -> Option<&'a mut [T]>where
R: OneSidedRange<usize>,
slice_take
)Removes the subslice corresponding to the given range and returns a mutable reference to it.
Returns None
and does not modify the slice if the given
range is out of bounds.
Note that this method only accepts one-sided ranges such as
2..
or ..6
, but not 2..6
.
§Examples
Taking the first three elements of a slice:
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut first_three = slice.take_mut(..3).unwrap();
assert_eq!(slice, &mut ['d']);
assert_eq!(first_three, &mut ['a', 'b', 'c']);
Taking the last two elements of a slice:
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
let mut tail = slice.take_mut(2..).unwrap();
assert_eq!(slice, &mut ['a', 'b']);
assert_eq!(tail, &mut ['c', 'd']);
Getting None
when range
is out of bounds:
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c', 'd'];
assert_eq!(None, slice.take_mut(5..));
assert_eq!(None, slice.take_mut(..5));
assert_eq!(None, slice.take_mut(..=4));
let expected: &mut [_] = &mut ['a', 'b', 'c', 'd'];
assert_eq!(Some(expected), slice.take_mut(..4));
sourcepub fn take_first<'a>(self: &mut &'a [T]) -> Option<&'a T>
🔬This is a nightly-only experimental API. (slice_take
)
pub fn take_first<'a>(self: &mut &'a [T]) -> Option<&'a T>
slice_take
)Removes the first element of the slice and returns a reference to it.
Returns None
if the slice is empty.
§Examples
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c'];
let first = slice.take_first().unwrap();
assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'a');
sourcepub fn take_first_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>
🔬This is a nightly-only experimental API. (slice_take
)
pub fn take_first_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>
slice_take
)Removes the first element of the slice and returns a mutable reference to it.
Returns None
if the slice is empty.
§Examples
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let first = slice.take_first_mut().unwrap();
*first = 'd';
assert_eq!(slice, &['b', 'c']);
assert_eq!(first, &'d');
sourcepub fn take_last<'a>(self: &mut &'a [T]) -> Option<&'a T>
🔬This is a nightly-only experimental API. (slice_take
)
pub fn take_last<'a>(self: &mut &'a [T]) -> Option<&'a T>
slice_take
)Removes the last element of the slice and returns a reference to it.
Returns None
if the slice is empty.
§Examples
#![feature(slice_take)]
let mut slice: &[_] = &['a', 'b', 'c'];
let last = slice.take_last().unwrap();
assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'c');
sourcepub fn take_last_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>
🔬This is a nightly-only experimental API. (slice_take
)
pub fn take_last_mut<'a>(self: &mut &'a mut [T]) -> Option<&'a mut T>
slice_take
)Removes the last element of the slice and returns a mutable reference to it.
Returns None
if the slice is empty.
§Examples
#![feature(slice_take)]
let mut slice: &mut [_] = &mut ['a', 'b', 'c'];
let last = slice.take_last_mut().unwrap();
*last = 'd';
assert_eq!(slice, &['a', 'b']);
assert_eq!(last, &'d');
sourcepub unsafe fn get_many_unchecked_mut<const N: usize>(
&mut self,
indices: [usize; N],
) -> [&mut T; N]
🔬This is a nightly-only experimental API. (get_many_mut
)
pub unsafe fn get_many_unchecked_mut<const N: usize>( &mut self, indices: [usize; N], ) -> [&mut T; N]
get_many_mut
)Returns mutable references to many indices at once, without doing any checks.
For a safe alternative see get_many_mut
.
§Safety
Calling this method with overlapping or out-of-bounds indices is undefined behavior even if the resulting references are not used.
§Examples
#![feature(get_many_mut)]
let x = &mut [1, 2, 4];
unsafe {
let [a, b] = x.get_many_unchecked_mut([0, 2]);
*a *= 10;
*b *= 100;
}
assert_eq!(x, &[10, 2, 400]);
sourcepub fn get_many_mut<const N: usize>(
&mut self,
indices: [usize; N],
) -> Result<[&mut T; N], GetManyMutError<N>>
🔬This is a nightly-only experimental API. (get_many_mut
)
pub fn get_many_mut<const N: usize>( &mut self, indices: [usize; N], ) -> Result<[&mut T; N], GetManyMutError<N>>
get_many_mut
)Returns mutable references to many indices at once.
Returns an error if any index is out-of-bounds, or if the same index was passed more than once.
§Examples
#![feature(get_many_mut)]
let v = &mut [1, 2, 3];
if let Ok([a, b]) = v.get_many_mut([0, 2]) {
*a = 413;
*b = 612;
}
assert_eq!(v, &[413, 2, 612]);
sourcepub fn sort_floats(&mut self)
🔬This is a nightly-only experimental API. (sort_floats
)
pub fn sort_floats(&mut self)
sort_floats
)Sorts the slice of floats.
This sort is in-place (i.e. does not allocate), O(n * log(n)) worst-case, and uses
the ordering defined by f32::total_cmp
.
§Current implementation
This uses the same sorting algorithm as sort_unstable_by
.
§Examples
#![feature(sort_floats)]
let mut v = [2.6, -5e-8, f32::NAN, 8.29, f32::INFINITY, -1.0, 0.0, -f32::INFINITY, -0.0];
v.sort_floats();
let sorted = [-f32::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f32::INFINITY, f32::NAN];
assert_eq!(&v[..8], &sorted[..8]);
assert!(v[8].is_nan());
sourcepub fn sort_floats(&mut self)
🔬This is a nightly-only experimental API. (sort_floats
)
pub fn sort_floats(&mut self)
sort_floats
)Sorts the slice of floats.
This sort is in-place (i.e. does not allocate), O(n * log(n)) worst-case, and uses
the ordering defined by f64::total_cmp
.
§Current implementation
This uses the same sorting algorithm as sort_unstable_by
.
§Examples
#![feature(sort_floats)]
let mut v = [2.6, -5e-8, f64::NAN, 8.29, f64::INFINITY, -1.0, 0.0, -f64::INFINITY, -0.0];
v.sort_floats();
let sorted = [-f64::INFINITY, -1.0, -5e-8, -0.0, 0.0, 2.6, 8.29, f64::INFINITY, f64::NAN];
assert_eq!(&v[..8], &sorted[..8]);
assert!(v[8].is_nan());
1.23.0 · sourcepub fn is_ascii(&self) -> bool
pub fn is_ascii(&self) -> bool
Checks if all bytes in this slice are within the ASCII range.
sourcepub fn as_ascii(&self) -> Option<&[AsciiChar]>
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_ascii(&self) -> Option<&[AsciiChar]>
ascii_char
)If this slice is_ascii
, returns it as a slice of
ASCII characters, otherwise returns None
.
sourcepub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
🔬This is a nightly-only experimental API. (ascii_char
)
pub unsafe fn as_ascii_unchecked(&self) -> &[AsciiChar]
ascii_char
)Converts this slice of bytes into a slice of ASCII characters, without checking whether they’re valid.
§Safety
Every byte in the slice must be in 0..=127
, or else this is UB.
1.23.0 · sourcepub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool
Checks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
1.23.0 · sourcepub fn make_ascii_uppercase(&mut self)
pub fn make_ascii_uppercase(&mut self)
Converts this slice to its ASCII upper case equivalent in-place.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To return a new uppercased value without modifying the existing one, use
to_ascii_uppercase
.
1.23.0 · sourcepub fn make_ascii_lowercase(&mut self)
pub fn make_ascii_lowercase(&mut self)
Converts this slice to its ASCII lower case equivalent in-place.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To return a new lowercased value without modifying the existing one, use
to_ascii_lowercase
.
1.60.0 · sourcepub fn escape_ascii(&self) -> EscapeAscii<'_>
pub fn escape_ascii(&self) -> EscapeAscii<'_>
Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.
§Examples
let s = b"0\t\r\n'\"\\\x9d";
let escaped = s.escape_ascii().to_string();
assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
1.80.0 · sourcepub fn trim_ascii_start(&self) -> &[u8] ⓘ
pub fn trim_ascii_start(&self) -> &[u8] ⓘ
Returns a byte slice with leading ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!(b" \t hello world\n".trim_ascii_start(), b"hello world\n");
assert_eq!(b" ".trim_ascii_start(), b"");
assert_eq!(b"".trim_ascii_start(), b"");
1.80.0 · sourcepub fn trim_ascii_end(&self) -> &[u8] ⓘ
pub fn trim_ascii_end(&self) -> &[u8] ⓘ
Returns a byte slice with trailing ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!(b"\r hello world\n ".trim_ascii_end(), b"\r hello world");
assert_eq!(b" ".trim_ascii_end(), b"");
assert_eq!(b"".trim_ascii_end(), b"");
1.80.0 · sourcepub fn trim_ascii(&self) -> &[u8] ⓘ
pub fn trim_ascii(&self) -> &[u8] ⓘ
Returns a byte slice with leading and trailing ASCII whitespace bytes removed.
‘Whitespace’ refers to the definition used by
u8::is_ascii_whitespace
.
§Examples
assert_eq!(b"\r hello world\n ".trim_ascii(), b"hello world");
assert_eq!(b" ".trim_ascii(), b"");
assert_eq!(b"".trim_ascii(), b"");
sourcepub fn as_str(&self) -> &str
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_str(&self) -> &str
ascii_char
)Views this slice of ASCII characters as a UTF-8 str
.
sourcepub fn as_bytes(&self) -> &[u8] ⓘ
🔬This is a nightly-only experimental API. (ascii_char
)
pub fn as_bytes(&self) -> &[u8] ⓘ
ascii_char
)Views this slice of ASCII characters as a slice of u8
bytes.
1.79.0 · sourcepub fn utf8_chunks(&self) -> Utf8Chunks<'_>
pub fn utf8_chunks(&self) -> Utf8Chunks<'_>
Creates an iterator over the contiguous valid UTF-8 ranges of this slice, and the non-UTF-8 fragments in between.
§Examples
This function formats arbitrary but mostly-UTF-8 bytes into Rust source
code in the form of a C-string literal (c"..."
).
use std::fmt::Write as _;
pub fn cstr_literal(bytes: &[u8]) -> String {
let mut repr = String::new();
repr.push_str("c\"");
for chunk in bytes.utf8_chunks() {
for ch in chunk.valid().chars() {
// Escapes \0, \t, \r, \n, \\, \', \", and uses \u{...} for non-printable characters.
write!(repr, "{}", ch.escape_debug()).unwrap();
}
for byte in chunk.invalid() {
write!(repr, "\\x{:02X}", byte).unwrap();
}
}
repr.push('"');
repr
}
fn main() {
let lit = cstr_literal(b"\xferris the \xf0\x9f\xa6\x80\x07");
let expected = stringify!(c"\xFErris the 🦀\u{7}");
assert_eq!(lit, expected);
}
1.0.0 · sourcepub fn sort(&mut self)where
T: Ord,
pub fn sort(&mut self)where
T: Ord,
Sorts the slice, preserving initial order of equal elements.
This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.
If T: Ord
does not implement a total order the resulting order is unspecified. All
original elements will remain in the slice and any possible modifications via interior
mutability are observed in the input. Same is true if T: Ord
panics.
When applicable, unstable sorting is preferred because it is generally faster than stable
sorting and it doesn’t allocate auxiliary memory. See
sort_unstable
. The exception are partially sorted slices, which
may be better served with slice::sort
.
§Current implementation
The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).
The auxiliary memory allocation behavior depends on the input length. Short slices are
handled without allocation, medium sized slices allocate self.len()
and beyond that it
clamps at self.len() / 2
.
If T: Ord
does not implement a total order, the implementation may panic.
§Examples
let mut v = [-5, 4, 1, -3, 2];
v.sort();
assert!(v == [-5, -3, 1, 2, 4]);
1.0.0 · sourcepub fn sort_by<F>(&mut self, compare: F)
pub fn sort_by<F>(&mut self, compare: F)
Sorts the slice with a comparator function, preserving initial order of equal elements.
This sort is stable (i.e., does not reorder equal elements) and O(n * log(n)) worst-case.
The comparator function should define a total ordering for the elements in the slice. If the ordering is not total, the order of the elements is unspecified.
If the comparator function does not implement a total order the resulting order is
unspecified. All original elements will remain in the slice and any possible modifications
via interior mutability are observed in the input. Same is true if the comparator function
panics. A total order (for all a
, b
and c
):
- total and antisymmetric: exactly one of
a < b
,a == b
ora > b
is true, and - transitive,
a < b
andb < c
impliesa < c
. The same must hold for both==
and>
.
For example, while f64
doesn’t implement Ord
because NaN != NaN
, we can use
partial_cmp
as our sort function when we know the slice doesn’t contain a NaN
.
let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0];
floats.sort_unstable_by(|a, b| a.partial_cmp(b).unwrap());
assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]);
§Current implementation
The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).
The auxiliary memory allocation behavior depends on the input length. Short slices are
handled without allocation, medium sized slices allocate self.len()
and beyond that it
clamps at self.len() / 2
.
If T: Ord
does not implement a total order, the implementation may panic.
§Examples
let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);
// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);
1.7.0 · sourcepub fn sort_by_key<K, F>(&mut self, f: F)
pub fn sort_by_key<K, F>(&mut self, f: F)
Sorts the slice with a key extraction function, preserving initial order of equal elements.
This sort is stable (i.e., does not reorder equal elements) and O(m * n * log(n)) worst-case, where the key function is O(m).
If K: Ord
does not implement a total order the resulting order is unspecified.
All original elements will remain in the slice and any possible modifications via interior
mutability are observed in the input. Same is true if K: Ord
panics.
§Current implementation
The current implementation is based on driftsort by Orson Peters and Lukas Bergdoll, which combines the fast average case of quicksort with the fast worst case and partial run detection of mergesort, achieving linear time on fully sorted and reversed inputs. On inputs with k distinct elements, the expected time to sort the data is O(n * log(k)).
The auxiliary memory allocation behavior depends on the input length. Short slices are
handled without allocation, medium sized slices allocate self.len()
and beyond that it
clamps at self.len() / 2
.
If K: Ord
does not implement a total order, the implementation may panic.
§Examples
let mut v = [-5i32, 4, 1, -3, 2];
v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);
1.34.0 · sourcepub fn sort_by_cached_key<K, F>(&mut self, f: F)
pub fn sort_by_cached_key<K, F>(&mut self, f: F)
Sorts the slice with a key extraction function, preserving initial order of equal elements.
This sort is stable (i.e., does not reorder equal elements) and O(m * n + n * log(n)) worst-case, where the key function is O(m).
During sorting, the key function is called at most once per element, by using temporary storage to remember the results of key evaluation. The order of calls to the key function is unspecified and may change in future versions of the standard library.
If K: Ord
does not implement a total order the resulting order is unspecified.
All original elements will remain in the slice and any possible modifications via interior
mutability are observed in the input. Same is true if K: Ord
panics.
For simple key functions (e.g., functions that are property accesses or basic operations),
sort_by_key
is likely to be faster.
§Current implementation
The current implementation is based on instruction-parallel-network sort by Lukas Bergdoll, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on fully sorted and reversed inputs. And O(k * log(n)) where k is the number of distinct elements in the input. It leverages superscalar out-of-order execution capabilities commonly found in CPUs, to efficiently perform the operation.
In the worst case, the algorithm allocates temporary storage in a Vec<(K, usize)>
the
length of the slice.
§Examples
let mut v = [-5i32, 4, 32, -3, 2];
v.sort_by_cached_key(|k| k.to_string());
assert!(v == [-3, -5, 2, 32, 4]);
1.0.0 · sourcepub fn to_vec(&self) -> Vec<T>where
T: Clone,
pub fn to_vec(&self) -> Vec<T>where
T: Clone,
Copies self
into a new Vec
.
§Examples
let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.
sourcepub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
🔬This is a nightly-only experimental API. (allocator_api
)
pub fn to_vec_in<A>(&self, alloc: A) -> Vec<T, A>
allocator_api
)Copies self
into a new Vec
with an allocator.
§Examples
#![feature(allocator_api)]
use std::alloc::System;
let s = [10, 40, 30];
let x = s.to_vec_in(System);
// Here, `s` and `x` can be modified independently.
1.0.0 · sourcepub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output ⓘ
pub fn concat<Item>(&self) -> <[T] as Concat<Item>>::Output ⓘ
Flattens a slice of T
into a single value Self::Output
.
§Examples
assert_eq!(["hello", "world"].concat(), "helloworld");
assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
1.3.0 · sourcepub fn join<Separator>(
&self,
sep: Separator,
) -> <[T] as Join<Separator>>::Output ⓘ
pub fn join<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output ⓘ
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
§Examples
assert_eq!(["hello", "world"].join(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]);
assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
1.0.0 · sourcepub fn connect<Separator>(
&self,
sep: Separator,
) -> <[T] as Join<Separator>>::Output ⓘ
👎Deprecated since 1.3.0: renamed to join
pub fn connect<Separator>( &self, sep: Separator, ) -> <[T] as Join<Separator>>::Output ⓘ
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
§Examples
assert_eq!(["hello", "world"].connect(" "), "hello world");
assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
1.23.0 · sourcepub fn to_ascii_uppercase(&self) -> Vec<u8> ⓘ
pub fn to_ascii_uppercase(&self) -> Vec<u8> ⓘ
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
1.23.0 · sourcepub fn to_ascii_lowercase(&self) -> Vec<u8> ⓘ
pub fn to_ascii_lowercase(&self) -> Vec<u8> ⓘ
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
Trait Implementations§
source§impl<T> AbsDiffEq for Vec4<T>where
T: AbsDiffEq,
<T as AbsDiffEq>::Epsilon: Copy,
impl<T> AbsDiffEq for Vec4<T>where
T: AbsDiffEq,
<T as AbsDiffEq>::Epsilon: Copy,
source§fn default_epsilon() -> <T as AbsDiffEq>::Epsilon
fn default_epsilon() -> <T as AbsDiffEq>::Epsilon
source§fn abs_diff_eq(
&self,
other: &Vec4<T>,
epsilon: <Vec4<T> as AbsDiffEq>::Epsilon,
) -> bool
fn abs_diff_eq( &self, other: &Vec4<T>, epsilon: <Vec4<T> as AbsDiffEq>::Epsilon, ) -> bool
§fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool
AbsDiffEq::abs_diff_eq
].source§impl<V, T> AddAssign<V> for Vec4<T>
impl<V, T> AddAssign<V> for Vec4<T>
source§fn add_assign(&mut self, rhs: V)
fn add_assign(&mut self, rhs: V)
+=
operation. Read moresource§impl<V, T> BitAndAssign<V> for Vec4<T>
impl<V, T> BitAndAssign<V> for Vec4<T>
source§fn bitand_assign(&mut self, rhs: V)
fn bitand_assign(&mut self, rhs: V)
&=
operation. Read moresource§impl<V, T> BitOrAssign<V> for Vec4<T>
impl<V, T> BitOrAssign<V> for Vec4<T>
source§fn bitor_assign(&mut self, rhs: V)
fn bitor_assign(&mut self, rhs: V)
|=
operation. Read moresource§impl<V, T> BitXorAssign<V> for Vec4<T>
impl<V, T> BitXorAssign<V> for Vec4<T>
source§fn bitxor_assign(&mut self, rhs: V)
fn bitxor_assign(&mut self, rhs: V)
^=
operation. Read moresource§impl<T> BorrowMut<[T]> for Vec4<T>
impl<T> BorrowMut<[T]> for Vec4<T>
source§fn borrow_mut(&mut self) -> &mut [T]
fn borrow_mut(&mut self) -> &mut [T]
source§impl<T> CheckedAdd for Vec4<T>where
T: CheckedAdd,
impl<T> CheckedAdd for Vec4<T>where
T: CheckedAdd,
source§impl<T> CheckedDiv for Vec4<T>where
T: CheckedDiv,
impl<T> CheckedDiv for Vec4<T>where
T: CheckedDiv,
source§impl<T> CheckedEuclid for Vec4<T>where
T: CheckedEuclid,
impl<T> CheckedEuclid for Vec4<T>where
T: CheckedEuclid,
source§fn checked_div_euclid(&self, v: &Vec4<T>) -> Option<Vec4<T>>
fn checked_div_euclid(&self, v: &Vec4<T>) -> Option<Vec4<T>>
None
instead of panicking on division by zero
and instead of wrapping around on underflow and overflow.source§fn checked_rem_euclid(&self, v: &Vec4<T>) -> Option<Vec4<T>>
fn checked_rem_euclid(&self, v: &Vec4<T>) -> Option<Vec4<T>>
None
is returned.source§fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>
fn checked_div_rem_euclid(&self, v: &Self) -> Option<(Self, Self)>
source§impl<T> CheckedMul for Vec4<T>where
T: CheckedMul,
impl<T> CheckedMul for Vec4<T>where
T: CheckedMul,
source§impl<T> CheckedNeg for Vec4<T>where
T: CheckedNeg,
impl<T> CheckedNeg for Vec4<T>where
T: CheckedNeg,
source§impl<T> CheckedRem for Vec4<T>where
T: CheckedRem,
impl<T> CheckedRem for Vec4<T>where
T: CheckedRem,
source§impl<T> CheckedSub for Vec4<T>where
T: CheckedSub,
impl<T> CheckedSub for Vec4<T>where
T: CheckedSub,
source§impl<T> Clamp<T> for Vec4<T>
impl<T> Clamp<T> for Vec4<T>
source§fn clamped_to_inclusive_range(self, range: RangeInclusive<Bound>) -> Self
fn clamped_to_inclusive_range(self, range: RangeInclusive<Bound>) -> Self
clamped
, which accepts a RangeInclusive
parameter instead of two values.source§fn clamp_to_inclusive_range(val: Self, range: RangeInclusive<Bound>) -> Self
fn clamp_to_inclusive_range(val: Self, range: RangeInclusive<Bound>) -> Self
clamp
, which accepts a RangeInclusive
parameter instead of two values.source§impl<T> Clamp for Vec4<T>where
T: Clamp,
impl<T> Clamp for Vec4<T>where
T: Clamp,
source§fn clamped_to_inclusive_range(self, range: RangeInclusive<Bound>) -> Self
fn clamped_to_inclusive_range(self, range: RangeInclusive<Bound>) -> Self
clamped
, which accepts a RangeInclusive
parameter instead of two values.source§fn clamp_to_inclusive_range(val: Self, range: RangeInclusive<Bound>) -> Self
fn clamp_to_inclusive_range(val: Self, range: RangeInclusive<Bound>) -> Self
clamp
, which accepts a RangeInclusive
parameter instead of two values.source§impl<'de, T> Deserialize<'de> for Vec4<T>where
T: Deserialize<'de>,
impl<'de, T> Deserialize<'de> for Vec4<T>where
T: Deserialize<'de>,
source§fn deserialize<__D>(
__deserializer: __D,
) -> Result<Vec4<T>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<Vec4<T>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
source§impl<T> Display for Vec4<T>where
T: Display,
impl<T> Display for Vec4<T>where
T: Display,
Displays the vector, formatted as ({...}, {...}, {...}, {...})
where ...
are the actual formatting parameters.
source§impl<V, T> DivAssign<V> for Vec4<T>
impl<V, T> DivAssign<V> for Vec4<T>
source§fn div_assign(&mut self, rhs: V)
fn div_assign(&mut self, rhs: V)
/=
operation. Read moresource§impl<T> Euclid for Vec4<T>where
T: Euclid,
impl<T> Euclid for Vec4<T>where
T: Euclid,
source§fn div_euclid(&self, v: &Vec4<T>) -> Vec4<T>
fn div_euclid(&self, v: &Vec4<T>) -> Vec4<T>
rem_euclid
. Read moresource§fn rem_euclid(&self, v: &Vec4<T>) -> Vec4<T>
fn rem_euclid(&self, v: &Vec4<T>) -> Vec4<T>
self (mod v)
. Read moresource§fn div_rem_euclid(&self, v: &Self) -> (Self, Self)
fn div_rem_euclid(&self, v: &Self) -> (Self, Self)
source§impl<T> From<(T, T, T, T)> for Vec4<T>
impl<T> From<(T, T, T, T)> for Vec4<T>
source§fn from(tuple: (T, T, T, T)) -> Vec4<T>
fn from(tuple: (T, T, T, T)) -> Vec4<T>
source§impl<T> From<Quaternion<T>> for Vec4<T>
impl<T> From<Quaternion<T>> for Vec4<T>
A Vec4
can be created directly from a quaternion’s x
, y
, z
and w
elements.
source§fn from(v: Quaternion<T>) -> Vec4<T>
fn from(v: Quaternion<T>) -> Vec4<T>
source§impl<T> From<Quaternion<T>> for Vec4<T>
impl<T> From<Quaternion<T>> for Vec4<T>
A Vec4
can be created directly from a quaternion’s x
, y
, z
and w
elements.
source§fn from(v: Quaternion<T>) -> Vec4<T>
fn from(v: Quaternion<T>) -> Vec4<T>
source§impl<T> From<T> for Vec4<T>where
T: Copy,
impl<T> From<T> for Vec4<T>where
T: Copy,
A vector can be obtained from a single scalar by broadcasting it.
This conversion is important because it allows scalars to be smoothly accepted as operands in most vector operations.
For instance :
assert_eq!(Vec4::min(4, 5), Vec4::broadcast(4));
assert_eq!(Vec4::max(4, 5), Vec4::broadcast(5));
assert_eq!(Vec4::from(4), Vec4::broadcast(4));
assert_eq!(Vec4::from(4).mul_add(4, 5), Vec4::broadcast(21));
// scaling_3d() logically accepts a Vec3...
let _ = Mat4::<f32>::scaling_3d(Vec3::broadcast(5.0));
// ... but there you go; quick uniform scale, thanks to Into !
let _ = Mat4::scaling_3d(5_f32);
On the other hand, it also allows writing nonsense. To minimize surprises, the names of operations try to be as explicit as possible.
// This creates a matrix that translates to (5,5,5), but it's probably not what you meant.
// Hopefully the `_3d` suffix would help you catch this.
let _ = Mat4::translation_3d(5_f32);
// translation_3d() takes V: Into<Vec3> because it allows it to accept
// Vec2, Vec3 and Vec4, and also with both repr(C) and repr(simd) layouts.
source§impl<T> From<Vec4<T>> for Quaternion<T>
impl<T> From<Vec4<T>> for Quaternion<T>
A quaternion can be created directly from a Vec4
’s x
, y
, z
and w
elements.
You are responsible for ensuring that the resulting quaternion is normalized.
source§fn from(v: Vec4<T>) -> Quaternion<T>
fn from(v: Vec4<T>) -> Quaternion<T>
source§impl<T> FromIterator<T> for Vec4<T>where
T: Default,
impl<T> FromIterator<T> for Vec4<T>where
T: Default,
source§impl<'a, T> IntoIterator for &'a Vec4<T>
impl<'a, T> IntoIterator for &'a Vec4<T>
source§impl<'a, T> IntoIterator for &'a mut Vec4<T>
impl<'a, T> IntoIterator for &'a mut Vec4<T>
source§impl<T> IntoIterator for Vec4<T>
impl<T> IntoIterator for Vec4<T>
source§impl<T> IsBetween<T> for Vec4<T>
impl<T> IsBetween<T> for Vec4<T>
source§fn is_between_inclusive_range_bounds(
self,
range: RangeInclusive<Bound>,
) -> Self::Output
fn is_between_inclusive_range_bounds( self, range: RangeInclusive<Bound>, ) -> Self::Output
RangeInclusive::contains()
, but is still useful for generics that use the IsBetween
trait.source§impl<T> IsBetween for Vec4<T>
impl<T> IsBetween for Vec4<T>
source§fn is_between_inclusive_range_bounds(
self,
range: RangeInclusive<Bound>,
) -> Self::Output
fn is_between_inclusive_range_bounds( self, range: RangeInclusive<Bound>, ) -> Self::Output
RangeInclusive::contains()
, but is still useful for generics that use the IsBetween
trait.source§impl<'a, T, Factor> Lerp<Factor> for &'a Vec4<T>
impl<'a, T, Factor> Lerp<Factor> for &'a Vec4<T>
source§fn lerp_unclamped_precise(
from: &'a Vec4<T>,
to: &'a Vec4<T>,
factor: Factor,
) -> Vec4<T>
fn lerp_unclamped_precise( from: &'a Vec4<T>, to: &'a Vec4<T>, factor: Factor, ) -> Vec4<T>
from
to to
with factor
unconstrained,
using a possibly slower but more precise operation. Read moresource§fn lerp_unclamped(from: &'a Vec4<T>, to: &'a Vec4<T>, factor: Factor) -> Vec4<T>
fn lerp_unclamped(from: &'a Vec4<T>, to: &'a Vec4<T>, factor: Factor) -> Vec4<T>
from
to to
with factor
unconstrained,
using the supposedly fastest but less precise implementation. Read moresource§fn lerp_unclamped_inclusive_range(
range: RangeInclusive<Self>,
factor: Factor,
) -> Self::Output
fn lerp_unclamped_inclusive_range( range: RangeInclusive<Self>, factor: Factor, ) -> Self::Output
lerp_unclamped()
that used a single RangeInclusive
parameter instead of two values.source§fn lerp_unclamped_precise_inclusive_range(
range: RangeInclusive<Self>,
factor: Factor,
) -> Self::Output
fn lerp_unclamped_precise_inclusive_range( range: RangeInclusive<Self>, factor: Factor, ) -> Self::Output
lerp_unclamped_precise()
that used a single RangeInclusive
parameter instead of two values.source§impl<T, Factor> Lerp<Factor> for Vec4<T>
impl<T, Factor> Lerp<Factor> for Vec4<T>
source§fn lerp_unclamped_precise(from: Vec4<T>, to: Vec4<T>, factor: Factor) -> Vec4<T>
fn lerp_unclamped_precise(from: Vec4<T>, to: Vec4<T>, factor: Factor) -> Vec4<T>
from
to to
with factor
unconstrained,
using a possibly slower but more precise operation. Read moresource§fn lerp_unclamped(from: Vec4<T>, to: Vec4<T>, factor: Factor) -> Vec4<T>
fn lerp_unclamped(from: Vec4<T>, to: Vec4<T>, factor: Factor) -> Vec4<T>
from
to to
with factor
unconstrained,
using the supposedly fastest but less precise implementation. Read moresource§fn lerp_unclamped_inclusive_range(
range: RangeInclusive<Self>,
factor: Factor,
) -> Self::Output
fn lerp_unclamped_inclusive_range( range: RangeInclusive<Self>, factor: Factor, ) -> Self::Output
lerp_unclamped()
that used a single RangeInclusive
parameter instead of two values.source§fn lerp_unclamped_precise_inclusive_range(
range: RangeInclusive<Self>,
factor: Factor,
) -> Self::Output
fn lerp_unclamped_precise_inclusive_range( range: RangeInclusive<Self>, factor: Factor, ) -> Self::Output
lerp_unclamped_precise()
that used a single RangeInclusive
parameter instead of two values.source§impl<T> Mul<Mat4<T>> for Vec4<T>
impl<T> Mul<Mat4<T>> for Vec4<T>
Multiplies a row vector with a column-major matrix, giving a row vector.
use vek::mat::column_major::Mat4;
use vek::vec::Vec4;
let m = Mat4::new(
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 0, 1,
2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(26, 32, 18, 24);
assert_eq!(v * m, r);
source§impl<T> Mul<Mat4<T>> for Vec4<T>
impl<T> Mul<Mat4<T>> for Vec4<T>
Multiplies a row vector with a row-major matrix, giving a row vector.
With SIMD vectors, this is the most efficient way.
use vek::mat::row_major::Mat4;
use vek::vec::Vec4;
let m = Mat4::new(
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 0, 1,
2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(26, 32, 18, 24);
assert_eq!(v * m, r);
source§impl<T> Mul<Vec4<T>> for Mat4<T>
impl<T> Mul<Vec4<T>> for Mat4<T>
Multiplies a column-major matrix with a column vector, giving a column vector.
With SIMD vectors, this is the most efficient way.
use vek::mat::column_major::Mat4;
use vek::vec::Vec4;
let m = Mat4::new(
0, 1, 2, 3,
4, 5, 6, 7,
8, 9, 0, 1,
2, 3, 4, 5
);
let v = Vec4::new(0, 1, 2, 3);
let r = Vec4::new(14, 38, 12, 26);
assert_eq!(m * v, r);
source§impl<T> Mul<Vec4<T>> for Quaternion<T>
impl<T> Mul<Vec4<T>> for Quaternion<T>
3D vectors can be rotated by being premultiplied by a quaternion, assuming the
quaternion is normalized.
On Vec4
s, the w
element is preserved, so you can safely rotate
points and directions.
use std::f32::consts::PI;
let v = Vec4::unit_x();
let q = Quaternion::<f32>::identity();
assert_relative_eq!(q * v, v);
let q = Quaternion::rotation_z(PI);
assert_relative_eq!(q * v, -v);
let q = Quaternion::rotation_z(PI * 0.5);
assert_relative_eq!(q * v, Vec4::unit_y());
let q = Quaternion::rotation_z(PI * 1.5);
assert_relative_eq!(q * v, -Vec4::unit_y());
let angles = 32;
for i in 0..angles {
let theta = PI * 2. * (i as f32) / (angles as f32);
// See what rotating unit vectors do for most angles between 0 and 2*PI.
// It's helpful to picture this as a right-handed coordinate system.
let v = Vec4::unit_y();
let q = Quaternion::rotation_x(theta);
assert_relative_eq!(q * v, Vec4::new(0., theta.cos(), theta.sin(), 0.));
let v = Vec4::unit_z();
let q = Quaternion::rotation_y(theta);
assert_relative_eq!(q * v, Vec4::new(theta.sin(), 0., theta.cos(), 0.));
let v = Vec4::unit_x();
let q = Quaternion::rotation_z(theta);
assert_relative_eq!(q * v, Vec4::new(theta.cos(), theta.sin(), 0., 0.));
}
source§impl<V, T> MulAssign<V> for Vec4<T>
impl<V, T> MulAssign<V> for Vec4<T>
source§fn mul_assign(&mut self, rhs: V)
fn mul_assign(&mut self, rhs: V)
*=
operation. Read moresource§impl<T> OverflowingAdd for Vec4<T>where
T: OverflowingAdd,
impl<T> OverflowingAdd for Vec4<T>where
T: OverflowingAdd,
source§impl<T> OverflowingMul for Vec4<T>where
T: OverflowingMul,
impl<T> OverflowingMul for Vec4<T>where
T: OverflowingMul,
source§impl<T> OverflowingSub for Vec4<T>where
T: OverflowingSub,
impl<T> OverflowingSub for Vec4<T>where
T: OverflowingSub,
source§impl<T> PartialEq for Vec4<T>where
T: PartialEq,
impl<T> PartialEq for Vec4<T>where
T: PartialEq,
source§impl<T> RelativeEq for Vec4<T>where
T: RelativeEq,
<T as AbsDiffEq>::Epsilon: Copy,
impl<T> RelativeEq for Vec4<T>where
T: RelativeEq,
<T as AbsDiffEq>::Epsilon: Copy,
source§fn default_max_relative() -> <T as AbsDiffEq>::Epsilon
fn default_max_relative() -> <T as AbsDiffEq>::Epsilon
source§fn relative_eq(
&self,
other: &Vec4<T>,
epsilon: <T as AbsDiffEq>::Epsilon,
max_relative: <T as AbsDiffEq>::Epsilon,
) -> bool
fn relative_eq( &self, other: &Vec4<T>, epsilon: <T as AbsDiffEq>::Epsilon, max_relative: <T as AbsDiffEq>::Epsilon, ) -> bool
§fn relative_ne(
&self,
other: &Rhs,
epsilon: Self::Epsilon,
max_relative: Self::Epsilon,
) -> bool
fn relative_ne( &self, other: &Rhs, epsilon: Self::Epsilon, max_relative: Self::Epsilon, ) -> bool
RelativeEq::relative_eq
].source§impl<V, T> RemAssign<V> for Vec4<T>
impl<V, T> RemAssign<V> for Vec4<T>
source§fn rem_assign(&mut self, rhs: V)
fn rem_assign(&mut self, rhs: V)
%=
operation. Read moresource§impl<T> SaturatingAdd for Vec4<T>where
T: SaturatingAdd,
impl<T> SaturatingAdd for Vec4<T>where
T: SaturatingAdd,
source§fn saturating_add(&self, v: &Vec4<T>) -> Vec4<T>
fn saturating_add(&self, v: &Vec4<T>) -> Vec4<T>
self + other
, saturating at the relevant high or low boundary of
the type.source§impl<T> SaturatingMul for Vec4<T>where
T: SaturatingMul,
impl<T> SaturatingMul for Vec4<T>where
T: SaturatingMul,
source§fn saturating_mul(&self, v: &Vec4<T>) -> Vec4<T>
fn saturating_mul(&self, v: &Vec4<T>) -> Vec4<T>
self * other
, saturating at the relevant high or low boundary of
the type.source§impl<T> SaturatingSub for Vec4<T>where
T: SaturatingSub,
impl<T> SaturatingSub for Vec4<T>where
T: SaturatingSub,
source§fn saturating_sub(&self, v: &Vec4<T>) -> Vec4<T>
fn saturating_sub(&self, v: &Vec4<T>) -> Vec4<T>
self - other
, saturating at the relevant high or low boundary of
the type.source§impl<T> Serialize for Vec4<T>where
T: Serialize,
impl<T> Serialize for Vec4<T>where
T: Serialize,
source§fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
source§impl<V, T> ShlAssign<V> for Vec4<T>
impl<V, T> ShlAssign<V> for Vec4<T>
source§fn shl_assign(&mut self, rhs: V)
fn shl_assign(&mut self, rhs: V)
<<=
operation. Read moresource§impl<V, T> ShrAssign<V> for Vec4<T>
impl<V, T> ShrAssign<V> for Vec4<T>
source§fn shr_assign(&mut self, rhs: V)
fn shr_assign(&mut self, rhs: V)
>>=
operation. Read moresource§impl<V, T> SubAssign<V> for Vec4<T>
impl<V, T> SubAssign<V> for Vec4<T>
source§fn sub_assign(&mut self, rhs: V)
fn sub_assign(&mut self, rhs: V)
-=
operation. Read moresource§impl<T> UlpsEq for Vec4<T>where
T: UlpsEq,
<T as AbsDiffEq>::Epsilon: Copy,
impl<T> UlpsEq for Vec4<T>where
T: UlpsEq,
<T as AbsDiffEq>::Epsilon: Copy,
source§fn default_max_ulps() -> u32
fn default_max_ulps() -> u32
source§impl<T> Wrap<T> for Vec4<T>
impl<T> Wrap<T> for Vec4<T>
source§fn wrapped(self, upper: T) -> Vec4<T>
fn wrapped(self, upper: T) -> Vec4<T>
upper
bound (both inclusive). Read moresource§fn wrapped_between(self, lower: T, upper: T) -> Vec4<T>
fn wrapped_between(self, lower: T, upper: T) -> Vec4<T>
source§impl<T> Wrap for Vec4<T>where
T: Wrap,
impl<T> Wrap for Vec4<T>where
T: Wrap,
source§fn wrapped(self, upper: Vec4<T>) -> Vec4<T>
fn wrapped(self, upper: Vec4<T>) -> Vec4<T>
upper
bound (both inclusive). Read moresource§impl<T> WrappingAdd for Vec4<T>where
T: WrappingAdd,
impl<T> WrappingAdd for Vec4<T>where
T: WrappingAdd,
source§fn wrapping_add(&self, v: &Vec4<T>) -> Vec4<T>
fn wrapping_add(&self, v: &Vec4<T>) -> Vec4<T>
self + other
, wrapping around at the boundary of
the type.source§impl<T> WrappingMul for Vec4<T>where
T: WrappingMul,
impl<T> WrappingMul for Vec4<T>where
T: WrappingMul,
source§fn wrapping_mul(&self, v: &Vec4<T>) -> Vec4<T>
fn wrapping_mul(&self, v: &Vec4<T>) -> Vec4<T>
self * other
, wrapping around at the boundary
of the type.source§impl<T> WrappingNeg for Vec4<T>where
T: WrappingNeg,
impl<T> WrappingNeg for Vec4<T>where
T: WrappingNeg,
source§fn wrapping_neg(&self) -> Vec4<T>
fn wrapping_neg(&self) -> Vec4<T>
-self
,
wrapping around at the boundary of the type. Read moresource§impl<T> WrappingSub for Vec4<T>where
T: WrappingSub,
impl<T> WrappingSub for Vec4<T>where
T: WrappingSub,
source§fn wrapping_sub(&self, v: &Vec4<T>) -> Vec4<T>
fn wrapping_sub(&self, v: &Vec4<T>) -> Vec4<T>
self - other
, wrapping around at the boundary
of the type.impl<T> Copy for Vec4<T>where
T: Copy,
impl<T> Eq for Vec4<T>where
T: Eq,
impl<T> StructuralPartialEq for Vec4<T>
Auto Trait Implementations§
impl<T> Freeze for Vec4<T>where
T: Freeze,
impl<T> RefUnwindSafe for Vec4<T>where
T: RefUnwindSafe,
impl<T> Send for Vec4<T>where
T: Send,
impl<T> Sync for Vec4<T>where
T: Sync,
impl<T> Unpin for Vec4<T>where
T: Unpin,
impl<T> UnwindSafe for Vec4<T>where
T: UnwindSafe,
Blanket Implementations§
§impl<T> AccessMut for T
impl<T> AccessMut for T
§fn access_mut(&mut self) -> &mut <T as Deref>::Target
fn access_mut(&mut self) -> &mut <T as Deref>::Target
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§default unsafe fn clone_to_uninit(&self, dst: *mut T)
default unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)source§impl<T> CloneToUninit for Twhere
T: Copy,
impl<T> CloneToUninit for Twhere
T: Copy,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)§impl<C, M> ConvertSaveload<M> for C
impl<C, M> ConvertSaveload<M> for C
§type Error = Infallible
type Error = Infallible
§fn convert_into<F>(
&self,
_: F,
) -> Result<<C as ConvertSaveload<M>>::Data, <C as ConvertSaveload<M>>::Error>
fn convert_into<F>( &self, _: F, ) -> Result<<C as ConvertSaveload<M>>::Data, <C as ConvertSaveload<M>>::Error>
Data
) using
entity to marker mapping function§fn convert_from<F>(
data: <C as ConvertSaveload<M>>::Data,
_: F,
) -> Result<C, <C as ConvertSaveload<M>>::Error>
fn convert_from<F>( data: <C as ConvertSaveload<M>>::Data, _: F, ) -> Result<C, <C as ConvertSaveload<M>>::Error>
Data
) using
entity to marker mapping function§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
§impl<Q, K> Equivalent<K> for Q
impl<Q, K> Equivalent<K> for Q
§fn equivalent(&self, key: &K) -> bool
fn equivalent(&self, key: &K) -> bool
key
and return true
if they are equal.§impl<T> GetSetFdFlags for T
impl<T> GetSetFdFlags for T
§fn get_fd_flags(&self) -> Result<FdFlags, Error>where
T: AsFilelike,
fn get_fd_flags(&self) -> Result<FdFlags, Error>where
T: AsFilelike,
self
file descriptor.§fn new_set_fd_flags(&self, fd_flags: FdFlags) -> Result<SetFdFlags<T>, Error>where
T: AsFilelike,
fn new_set_fd_flags(&self, fd_flags: FdFlags) -> Result<SetFdFlags<T>, Error>where
T: AsFilelike,
§impl<T> Instrument for T
impl<T> Instrument for T
§fn instrument(self, span: Span) -> Instrumented<Self>
fn instrument(self, span: Span) -> Instrumented<Self>
§fn in_current_span(self) -> Instrumented<Self>
fn in_current_span(self) -> Instrumented<Self>
source§impl<T> IntoEither for T
impl<T> IntoEither for T
source§fn into_either(self, into_left: bool) -> Either<Self, Self>
fn into_either(self, into_left: bool) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left
is true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read moresource§fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
self
into a Left
variant of Either<Self, Self>
if into_left(&self)
returns true
.
Converts self
into a Right
variant of Either<Self, Self>
otherwise. Read more§impl<T> Pointable for T
impl<T> Pointable for T
§impl<T> Pointee for T
impl<T> Pointee for T
§impl<Context> SubContext<Context> for Context
impl<Context> SubContext<Context> for Context
fn sub_context(self) -> Context
source§impl<T> ToHex for T
impl<T> ToHex for T
source§fn encode_hex<U>(&self) -> Uwhere
U: FromIterator<char>,
fn encode_hex<U>(&self) -> Uwhere
U: FromIterator<char>,
self
into the result. Lower case
letters are used (e.g. f9b4ca
)source§fn encode_hex_upper<U>(&self) -> Uwhere
U: FromIterator<char>,
fn encode_hex_upper<U>(&self) -> Uwhere
U: FromIterator<char>,
self
into the result. Upper case
letters are used (e.g. F9B4CA
)§impl<T> TryDefault for Twhere
T: Default,
impl<T> TryDefault for Twhere
T: Default,
§fn try_default() -> Result<T, String>
fn try_default() -> Result<T, String>
§fn unwrap_default() -> Self
fn unwrap_default() -> Self
try_default
and panics on an error case.